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We study the query complexity of quantum learning problems in which the oracles

form a group G of unitary matrices. In the simplest case, one wishes to identify the

oracle, and we find a description of the optimal success probability of a t-query quantum

algorithm in terms of group characters. As an application, we show that Ω(n) queries

are required to identify a random permutation in Sn. More generally, suppose H is

a fixed subgroup of the group G of oracles, and given access to an oracle sampled

uniformly from G, we want to learn which coset of H the oracle belongs to. We call

this problem coset identification and it generalizes a number of well-known quantum

algorithms including the Bernstein-Vazirani problem, the van Dam problem and finite

field polynomial interpolation. We provide character-theoretic formulas for the optimal

success probability achieved by a t-query algorithm for this problem. One application

involves the Heisenberg group and provides a family of problems depending on n which

require n+ 1 queries classically and only 1 query quantumly.

1 Introduction
An oracle problem is a learning task in which a learner tries to determine some information by

asking certain questions to a teacher, called an oracle. In our setting the learner is a quantum

computer and the oracle is an unknown unitary operator acting on some subsystem of the com-

puter. The computer asks questions by preparing states, subjecting them to the oracle, measuring

the results, and finally making a guess about the hidden information. How many queries to the

oracle are needed by the computer to guess the correct answer with high probability?

This paper addresses the following oracle problem. Fix a finite group G and a subgroup H ≤ G.

The elements of G are encoded as unitary operators by some unitary representation π : G→ U(V ).
Given oracle access to π(a) (for some unknown a ∈ G) the learner must guess which coset of H

the element a lies in. We focus on average case success probability, though an easy averaging ar-

gument, given in Section 2, shows that the worst case and average case query complexity are equal.

We call this problem coset identification. This task encompasses many of previously studied

qauntum oracle problems, including univariate and multivariate polynomial interpolation over a

finite field [CvDHS16, CCH18], the group summation problem [MP14, Zha15, BBC+01], and sym-

metric oracle discrimination [BCMP16]. In addition, the coset identification problem we study gen-

eralizes the homomorphism evaluation problem for abelian groups studied by Zhandry in [Zha15],

which greatly inspired us. Section 7 gives details of this connection.
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In this paper, we analyze the query complexity of the general coset identification problem. We

prove that nonadaptive algorithms are optimal for any coset identification problem. We provide

tools to reduce the analysis of query complexity to purely character theoretic questions (which

are themselves often combinatorial). In particular we derive a formula for the exact quantum

query complexity for coset identification in terms of characters. In the case of symmetric oracle

discrimination (which itself includes polynomial interpolation as a special case) we find the lower

and upper bound for bounded error query complexity.

Another motivation for our work is the study of nonabelian oracles. Much is known about

quantum speedups when the oracle is a standard Boolean oracle. Less is known about whether

oracle problems with nonabelian symmetries can offer notable speedups. To that end we study the

follow scenario: suppose a group G acts by permutations on a finite set Ω (we call Ω a G-set). A

learner is given access to a machine which takes an element ω ∈ Ω and returns a ·ω for some hidden

group element a ∈ G. With as few queries as possible the learner should guess the hidden element

a ∈ G. The classical query complexity for this problem is a long-known invariant of G-sets called

the base size. For instance, if G is the full permutation group of Ω = {1, . . . , n} then n− 1 queries

are required classically to determine the hidden permutation. This problem is a special case of

symmetric oracle discrimination and we can express the bounded error quantum query complexity

of this purely in terms of the character of the G-set Ω. For instance, we find that when G is the full

permutation group of X = {1, . . . , n} then n−2
√
n+Θ(n1/6) queries are necessary (and sufficient)

to determine the hidden element.

This result bears some similarity to other work on learning problems related to the symmet-

ric group. Aaronson and Ambainis [AA14], who prove that at most a polynomial speedup can

be achieved in computing functions on n inputs which are invariant under the action of the full

symmetric group Sn (using a standard evaluation oracle). Ben-David [BD16] proves that at most

a polynomial speedup is possible for Boolean functions defined on the full symmetric group. More

recently, Dafni, Filmus, Lifshitz, Lindzay and Vinyals [DFL+21] have studied the query complex-

ity of Boolean functions defined on the symmetric group, again proving a polynomial relationship

between the quantum and classical query complexities (as well as numerous other complexity mea-

sures). These results may be compared to the well-known fact that only polynomial speedups are

possible in computing total Boolean functions [BBC+01], the idea being that learning problems

on the full symmetric group correspond to total functions, while learning problems on a subgroup

correspond to partial functions. All of the results mentioned above are not directly comparable to

ours, since they use a standard evaluation oracle, while we examine a more symmetric “in-place”

oracle model.

The task of oracle identification can be further refined: fix a group G, a G-set Ω, and a func-

tion f : G → X which is constant on left cosets of some subgroup H, and distinct on distinct

cosets. The (left) coset identification problem is to determine f(a) given access to a permutational

black-box hiding a through the action on Ω. For instance, when G = Sn (the symmetric group),

Ω = {1, . . . , n} its defining representation and f the sign homomorphism, it requires n−1 classical

queries to determine f(a). As a counterpoint to the harsh lower bound above we provide a family

of examples for this task parametrized by n in which the quantum query complexity is 1 while the

classical complexity is O(n). The groups we use are Heisenberg groups acting as small subgroups of

the full permutation group. This example is a nonabelian analogue of the fact that good quantum

speedups can be found in computing partial Boolean functions [BV97].

The paper is organized as follows. In section 2 we formalize coset identification in the context

of quantum learning algorithms and review the notions of adaptive and nonadaptive learning. In

section 3 we prove that parallel queries suffice to produce an optimal algorithm for this task. Sec-

tion 4 applies this theorem to symmetric oracle discrimination and addresses numerous example

problems. In section 5 we return to the general coset identification task and we prove the main
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theorem of this paper, Theorem 5.1, which is a formula for the success probability of an optimal t-

query algorithm in terms of characters. We use this in section 6 to compute the exact and bounded

error query complexity of some special examples (including the Heisenberg group example). We

conclude in section 7 by explaining how our work reproduces several previously known results

involving abelian oracles.

Our paper uses the language of representation theory of finite groups. A suitable reference is

the first third of Serre’s textbook [Ser96]. We review some important notations later in Section

5 (in particular, the idea of induced representation is critical for the statement of our results.)

Here we mention that a representation of a finite group G always refers to a finite dimensional and

unitary representation of G over the complex numbers. In other words, a representation is a group

homomorphism π : G → U(V ) (the unitary group of a f.d. vector space V ). We often think of V

as a left module for the group alegbra CG, and use the notation gv for π(g)v when the map π is

clear from the context.

2 Quantum learning from oracles
A quantum or classical oracle problem is described by a set of hidden information Y , a function

f : Y → X (the function to learn or compute), and a representation of Y as operations on inputs

of some kind (which determines the oracles). Classically such a representation consists of a set of

inputs Ω and an assignment taking each y ∈ Y to a permutation of Ω, i.e. a map π : Y → Sym(Ω).
A classical oracle problem is specified by a tuple (Y,Ω, π, f). A classical computer has access to

π(y) for some unknown y ∈ Y by spending one query to input ω ∈ Ω to learn π(y)·ω. The goal is to

determine f(y) with a high degree of certainty with as few queries as possible. More concretely, we

measure the efficacy of an algorithm by its average case success probability, namely the probability

of correctly outputting f(y) supposing the hidden information y is sampled uniformly from Y . For

the highly symmetric problems considered in this paper, this is the same as the worst-case success

probability, as explained below.

The quantum representation of oracles is described by a Hilbert space V and an assignment

taking each y ∈ Y to a unitary operator of V , in other words a map π : Y → U(V ). Thus a

quantum oracle problem is specified by a tuple (Y, V, π, f). The quantum computer spends one

query to input a state |ψ〉 ∈ V to π(y) to acquire the state π(y)|ψ〉; the goal is to produce a state

and measurement scheme which outputs the value f(y).

Any classical oracle problem (Y,Ω, π, f) determines a quantum oracle problem via linearization:

oracles will act on the Hilbert space CΩ (spanned by the orthonormal basis {|ω〉 | ω ∈ Ω}) by

permutation matrices.

We note that there are other oracle models used to encode permutations. One possibility is

to require an oracle to act on a bipartite system, with one subsystem specified to be the “input

register” and the other a “response register”. 1 While we do not specifically consider this model

here, we note that many oracle problems, such as polynomial interpolation and group summation,

that are normally formulated in this two-register setup do have an easy reformulation in our setup.

Thus, our results and analyses apply to these problems in their original two-register formulation.

See Section 7. However, in some cases, the two-register setup results in a set of oracles that do not

form a group, for instance in the work of Ambainis on permutation inversion [Amb02]. In general,

it is an interesting question (and to our knowledge, open) whether these oracle models are the

1More precisely, one usually defines an abelian group structure on Ω (usually cyclic) by defining an operation ⊕
on Ω. Then the oracle hiding the permutation π(a) is defined to act by |ω, b〉 7→ |ω, (π(a) · ω) ⊕ b〉. Here ω, b ∈ Ω,
so both the input and response registers are copies of CΩ.
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same, or if they lead to different query complexities. 2

A symmetric oracle problem is an oracle problem in which the hidden information is a group G

(so we are replacing Y with G) and the map π is a homomorphism G → Sym(Ω) in the classical

case or G→ U(V ) in the quantum case. If π : G→ U(V ) is a homomorphism, then it is common

practice to regard V as a (left) CG-module where CG is the group algebra of G (spanned by an

orthonormal basis sometimes written without kets as {g | g ∈ G}. In module notation we some-

times write g · v := π(g)(v) (for g ∈ G, v ∈ V ) if the representation π is understood from context.

The quantum oracle arising from a symmetric classical problem is also symmetric.

Of special interest to us is the case when the function f to be learned is compatible with the

group structure G. An instance of the coset identification problem is a symmetric oracle problem

(G,V, π, f) where the function f : G→ X is constant on left cosets of a subgroup H ≤ G and dis-

tinct on distinct cosets. We also assume f is onto. The typical example is when X = {gH | g ∈ G}
is the set of left cosets of H and f(g) = gH. An equivalent formulation is to say that X is a

transitive G-set and the map f : G → X is a map of (left) G-sets (i.e., f(gh) = gf(h) for all

g, h ∈ G). Then the subgroup H can be recovered as the preimage of f(e).

For our analysis of the coset identification problem, we focus on average case success probabil-

ity. The symmetry of the problem implies that worst case and average case success probabilites

are equal, as the following argument shows: provided an unknown oracle π(a) we can select g ∈ G
uniformly at random and preprocess our input by applying π(g). Then an optimal average-case

algorithm will return the coset containing ga with optimal average-case success probability. The

coset which contains a can then be retrieved by applying g−1. Hence it suffices to consider the

average case success probability of any algorithm for this task (with the unknown oracle π(a) sam-

pled uniformly from G).

We examine bounded error and exact measures of query complexity. The exact (or zero error)

query complexity of a learning problem is the minimum number of queries needed by an algorithm

to compute f(y) with zero probability of error. The bounded error query complexity is the minimum

number of queries needed by an algorithm to compute f(y) with probability ≥ 2/3. The bounded

error query complexity is often studied for a family of problems growing with a parameter n and

so changing the constant 2/3 above to any number strictly greater than 1/2 will only change the

query complexity by a constant factor mostly ignored in asymptotic analysis.

Broadly speaking, there are two qualitatively different approaches to solving an oracle prob-

lem. The first approach is to ask questions one at a time, carefully changing your questions as you

receive more information. This is called using adaptive queries. The other approach is to prepare

all your questions and ask them at once in one go (imagining the learner has access to multiple

copies of the teacher). This is known as using non-adaptive, or parallel queries.

Classically the adaptive model is at least as strong as the nonadaptive model, since you can

convert any nonadaptive algorithm into an adaptive one (by picking your questions in advance but

asking them one at a time). This is well-known to be true also in the quantum setting. In the next

section we will prove the converse for coset identification:

Theorem 2.1. Suppose (G,V, π, f) describes an instance of coset identification. Then there exists
a t-query quantum algorithm to determine f(a) with probability P if and only if there exists a
t-query nonadaptive query algorithm which does the same.

This theorem is certainly not true for arbitrary learning problems: Grover’s algorithm provides

2As another modification, one may propose that having access to an oracle O means an algorithm may choose
to access O or O−1 in any given query. This is a separate model which we do not consider here.
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an example in which any optimal algorithm must use adaptive queries [Zal99]. To prove the

theorem we must precisely state what adaptive and nonadaptive algorithms are.

2.1 Adaptive vs. nonadaptive: definitions
Recall that a quantum learning problem is described by a tuple (Y, V, π, f : Y → X) where Y

indexes the set of hidden information, V is a finite dimensional Hilbert space, π : Y → U(V ) a

representation of the unknown information by unitary operators, and f is the function to learn.

The standard model for an adaptive algorithm is as follows (see e.g. [BBC+01, Section 3.2]):

A t-query adaptive quantum algorithm for the quantum oracle problem (Y, V, π, f : Y → X)
consists of a tuple A = (N,ψ, {U1, . . . , Ut}, {Ei}) where

• N is the dimension of the auxiliary workspace used in the computation

• |ψ〉 is a unit vector in V ⊗ CN

• {U1, . . . , Ut} is a set of unitary operators acting on V ⊗ CN

• {Ex}x∈X is a POVM with measurement outcomes indexed by X.

The algorithm uses t queries to the oracle π(a) (with a sampled uniformly from Y ) to produce

the output state

|ψAa 〉 = Ut(π(a)⊗ I)Ut−1(π(a)⊗ I) . . . (π(a)⊗ I)U1(π(a)⊗ I)|ψ〉

upon which the algorithm executes the measurement described by {Ex}x∈X . Here and elsewhere

I denotes the identity operator (in this case acting on the space CN ).

In quantum circuit notation the preparation of the state |ψAa 〉 reads:

|ψ〉
π(a)

U1

π(a)
. . .

π(a)
Ut−1

π(a)
Ut = |ψA

a 〉

By contrast, an algorithm is nonadaptive if at any point during the algorithm, the input for

some query does not depend on the results to any of the previous queries. Essentially this means

that all the inputs are completely determined before the algorithm begins. Classically, t nonadap-

tive queries are identical to t simultaneous queries to t copies of an oracle. This motivates the

following definition (cf [Mon10, Section 2]):

A t-query nonadaptive quantum algorithm for the oracle problem (Y, V, π, f) is a tuple A =
(N,ψ, {Ex})x∈X where

• N is the dimension of the auxiliary register.

• |ψ〉 is the input state, a unit vector of V ⊗t ⊗ CN .

• {Ex} is a POVM indexed by X.

The algorithm operates on the input state to produce

|ψAa 〉 = (π(a)⊗t ⊗ I)|ψ〉

which is then measured using the POVM {Ex}. The next fact is very useful and follows immediately

from definitions.
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Lemma 2.2. A t-query nonadaptive algorithm for the problem (Y, V, π, f) is the same as a single-
query nonadaptive algorithm for the oracle problem (Y, V ⊗t, π⊗t, f).

The quantum circuit notation for the nonadaptive preparation of the state |ψAa 〉 is drawn as

follows.

|ψ〉

π(a)

π(a)

...

π(a)

= |ψA
a 〉

In either model, the algorithm A uses t copies of the unitary π(a) to produce a state |ψAa 〉.
Using the POVM {Ex} results in a measurement value x ∈ X with probability

P (x | a) = 〈ψAa |Ex|ψAa 〉.

Since we assume the oracle is sampled uniformly from Y , the probability that A executes

successfully is

Psucc(A) = 1
|Y |

∑
a∈Y

P (f(a) | a) = 1
|Y |

∑
a∈Y
〈ψAa |Ef(a)|ψAa 〉.

2.2 Symmetric oracle problems
Suppose we have a symmetric oracle problem (G,V, π, f). As mentioned in the introduction, since

we are focusing on query complexity and not on issues of implementation, analysis of this problem

depends only on the character χV of π : G → U(V ), as we prove in the lemma below. In fact, a

little more is true. Let Irr(G) denote the set of irreducible characters of G. Given a representation

π : G→ U(V ) define the set

I(V ) := {χ ∈ Irr(G) appearing in the representation V }
= {χ ∈ Irr(G) | (χ, χV ) > 0}.

Here we are using (·, ·) to denote the usual inner product of characters. If χ ∈ Irr(G) and (χ, χV ) >
0 we say that χ appears in the representation V .

Lemma 2.3. The optimal success probability of a t-query algorithm to solve a symmetric oracle
problem (G,V, π, f) depends only on I(V ) and f .

Proof. First, note that if U : V → W is a Hilbert space isomorphism then we can define a new
oracle problem (G,W,UπU−1, f) where the oracles now act on W . Any t-query algorithm to solve
the original problem can be “conjugated” by U (e.g. the input state |ψ〉 becomes U |ψ〉 and the
non-oracle unitaries and POVM are conjugated by U) to produce a t-query algorithm for the new
problem which succeeds with the same probability. Conversely any algorithm to solve the new
problem can be conjugated by U−1 to solve the old problem with the same probability. Therefore
oracle problems with isomorphic unitary representations of G will have the same t-query optimal
success probability. In other words, only the character χV is relevant.

Second, we claim that the multiplicities of irreducible characters in V are not important; only
whether they appear in V or not. Indeed, adding a d-dimensional workspace to a computer’s

Accepted in Quantum 2021-03-03, click title to verify. Published under CC-BY 4.0. 6



original system V produces a new representation V ⊗ Cd of G with character dχV . Since we
allow our algorithm to introduce any such workspace, we are in effect allowing it to increase the
multiplicity of each character by a factor of d. Note that this process will never produce irreps
which did not appear in V to begin with. Hence the optimal success probability depends only on
which irreps appear in V , i.e. the set I(V ).

It makes sense that if an algorithm is granted access to more representations to work with, its

success probability cannot decrease. To be more precise, fix t, and let Popt(G,V, π, f) denote the

optimal success probability of a t-query algorithm for the symmetric oracle problem (G,V, π, f).

Lemma 2.4. Suppose πV , πW are representations of G on the spaces V and W , with I(W ) ⊂ I(V ).
Then

Popt(G,W, πW , f) ≤ Popt(G,V, πV , f).

Proof. The basic idea is any t-query algorithm to solve (G,W, πW , f) can be extended to produce a
t-query algorithm for (G,V, πV , f). Suppose an algorithm A for W uses an N dimensional ancilla
space, i.e. operates on W ⊗ CN . Since I(W ) ⊂ I(V ), there exists some M so that V ⊗ CM
contains a subrepresentation isomorphic to W ⊗ CN . Hence we can write V ⊗ CM = W ′ ⊕ Y

where W ′ ∼= W ⊗ CN as CG-modules. Now we claim the initial state, intermediate unitaries, and
POVM for the algorithm A can be extended to an algorithm A′ acting on V ⊗ CM . The initial
state for A′ is the vector in W ′ ⊂ V ⊗ CN corresponding to the initial state for A in W ⊗ CN .
The intermediate unitaries for A′ act on W ′ according to the unitaries for the algorithm A and
are extended arbitrarily to Y . The measurement operators for A′ all agree with the measurement
operators for A on W ′ and all but one of the operators act as 0 on the subspace Y . To satisfy the
completeness relation on V ⊗CM , exactly one of the POVMs should act as the identity on Y (this
modification is unimportant since A′ “takes place” entirely within W ′). The success probability of
A′ is equal to that of A.

3 Parallel queries suffice
Here we prove Theorem 2.1, namely that the optimal success probability for coset identification

can be attained by a parallel (nonadaptive) algorithm. We prove this by showing that any t-query

adaptive algorithm can be converted to a t-query nonadaptive algorithm without affecting the suc-

cess probability. Another way to say this is that every t-query adaptive algorithm can be simulated

by a t-query nonadaptive one. This technique is greatly inspired by the work of Zhandry [Zha15]

who proves this result when G is abelian, and also bears resemblance to the lower bound technique

of Childs, van Dam, Hung and Shparlinski [CvDHS16], where the special case of polynomial inter-

polation is addressed.

Let π : G → U(V ) be a unitary representation of G. Let CG denote the group algebra of

G. Each h ∈ G acts on CG by left multiplication, an operator we denote Lh. We will use the

controlled multiplication operator ([DBCW+02]) defined on V ⊗ CG by

CM |v, g〉 = |π(g−1)v, g〉.

This defines a unitary operator and is a generalization of the standard CNOT gate (take G = Z2
and V = CZ2). As such we draw it using circuit diagrams as in section 3.

V

CG
Figure 1: Notation for the controlled multiplication gate CM .
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There are two G-actions on V ⊗ CG we use, one given by π(h) ⊗ Lh and the other I ⊗ Lh. Our

first observation is that CM intertwines these actions.

Lemma 3.1. The controlled multiplication operator satisfies

CM(π(h)⊗ Lh) = (I ⊗ Lh)CM.

The proof follows by applying both sides to a vector |v, g〉 and using the definition of CM . The

representation obtained by letting each h ∈ G act by the identity on V is a direct sum of dimV

many copies of the trivial reprseentation, so we denote it 1⊕ dimV . The lemma allows us to in-

terpret CM as a CG-module isomorphism V ⊗CG→ 1
⊕ dimV ⊗CG. In pictures the lemma reads:

π(h)

Lh Lh

=

Figure 2: Lemma 3.1 in pictures.

The next property is crucial for our parallelization argument. Recall that if W is a CG-module

then I(W ) denotes the set of irreducible characters of G which appear in W .

Lemma 3.2. Suppose W is a subrepresentation of CG. Then there is a subrepresentation Y of CG
such that the image of V ⊗W under CM is contained in V ⊗Y and Y satisfies I(Y ) = I(V ⊗W ).

Proof. By Lemma 3.1 CM is a CG-module isomorphism V ⊗ CG→ 1
⊕ dimV ⊗ CG where V and

1
⊕ dimV have the same underlying vector space. Let Z denote the image of V ⊗W under CM .

Then CM restricts to a CG-module isomorphism V ⊗W → Z. Next let Y be the submodule of
CG which contains each irreducible of I(Z) with maximal multiplicity (so if χ appears in Y then χ
appears with multiplicity χ(e)). Now Z ∼= V ⊗W as CG-modules so in particular I(Z) = I(V ⊗W ).
Hence also I(Y ) = I(V ⊗W ).

It remains to prove Z ⊆ V ⊗ Y . Indeed, in the CG-module 1
⊕ dimV ⊗ CG the subspace

1
⊕ dimV ⊗Y is the maximal subrepresentation containing only irreducibles in I(V ⊗W ). As noted
Z contains only irreducibles in I(V ⊗W ) so therefore Z ⊆ 1

⊕ dimV ⊗ Y , which is the same vector
space as V ⊗ Y .

Now suppose (G,V, π, f) is an instance of coset identification and A =
(N, |ψ〉, {U1, . . . , Ut}, {Ex}) is a t-query adaptive algorithm to evaluate the homomorphism

f . First, by replacing π with π⊗ I if necessary, we may assume that the algorithm does not use a

workspace, that is N = 1. We will describe a new adaptive algorithm A′ which is a modification

of A as follows. We introduce a new workspace which is a copy of CG. The new intermediate

unitaries are (U1 ⊗ I)CM, (U2 ⊗ I)CM, . . . , (Ut ⊗ I)CM . The input state is |ψ〉 ⊗ |η〉 where η is

the equal superposition state in CG. When the oracle is hiding the unitary π(a) this produces the

following state:

|ψ〉

|η〉

π(a) U1 π(a)
. . .

Ut−1 π(a) Ut

Figure 3: Pre-measurement state for A′.
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Next measurement is performed: first the second register is measured in the standard basis of

CG. Then the original POVM is applied to the first register. The result of these two measurements

will be a pair (g, x); the final output of the algorithm is gx. 3

Lemma 3.3. The algorithm A′ succeeds with the same success probability as A.

Lemma 3.4. The algorithm A′ can be simulated by a t-query parallel query algorithm.

Proof of Theorem 2.1 from Lemmas 3.3 and 3.4. By the two lemmas, given any t-query adaptive
algorithm A which solves coset identification with probability P , there exists a t-query parallel
query algorithm which succeeds with the same probability.

Proof of Lemma 3.3. Consider the pre-measurement state for A′ given that the hidden group ele-
ment is a ∈ G. It can be written

|ψA
′

a 〉 = 1√
|G|

∑
g∈G
|ψAg−1a〉 ⊗ |g〉.

If the first measurement reads g then the state collapses to |ψAg−1a〉⊗|g〉. If the second measurement
is now performed, the result will read f(g−1a) with the same probability that the algorithm A
would read this result given that the oracle was hiding g−1a. The algorithm then classically
converts the result to gf(g−1a) which is equal to f(a) since f is a left G-set map. So the following
conditional probabilities are equal:

P (A′ outputs f(a) | a is hidden , first measurement result is g)
= P (A outputs f(g−1(a)) | g−1a is hidden ).

Denote these probabilities by PA′(f(a) | a, g) and PA(f(g−1a) | g−1a) respectively. Since the prob-
ability that the first measurement of A′ reads g is 1/|G| for all G and g is sampled independently
of a, we compute the average case success probability by

Psucc(A′) = 1
|G|2

∑
g∈G

∑
a∈G

PA′(f(a) | a, g)

= 1
|G|2

∑
g∈G

∑
a∈G

PA(f(g−1a) | g−1a)

= 1
|G|

∑
g∈G

Psucc(A) = Psucc(A).

Proof of Lemma 3.4. We rewrite the pre-measurement state of A′ expressed by Figure 3 using
Lemma 3.1. Denote the state that results when the hidden element is a ∈ G by |ψA′a 〉. We apply
Lemma 3.1 diagrammatically from left to right:

|ψ〉

|η〉
|ψA′

a 〉 =
π(a) U1 π(a)

. . .
Ut−1 π(a) Ut

3Formally the algorithm A′ is given by

A′ = (|G|, |ψ, η〉, {U1 ⊗ I ◦ CM, . . . , Ut ⊗ I ◦ CM}, {E′x =
∑
g∈G

Eg−1x ⊗ |g〉〈g|}).
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|ψ〉

|η〉
=

La−1

U1 π(a)

La

. . .
Ut−1 π(a) Ut

|ψ〉

|η〉
=

La−1

U1

La

. . .
Ut−1 π(a) UtU2

|ψ〉

|η〉
· · · =

La−1

U1
. . .

Ut−1 π(a) UtU2

La

|ψ〉

|η〉
=

U1
. . .

Ut−1 π(a) UtU2

La

In the last step, in addition to applying Lemma 3.1 at the right of the diagram, we used the
fact that La−1 |η〉 = |η〉. In formulas we have

|ψA
′

a 〉 = (I ⊗ La) ◦
(
(Ut ⊗ I) ◦ CM ◦ · · · ◦ (U1 ⊗ I) ◦ CM

)
|ψ, η〉.

Therefore we have converted this algorithm to a single-query algorithm using the oracle I ⊗ La
with initial state U |ψ, η〉 where U = (Ut ⊗ I) ◦ CM ◦ · · · ◦ (U1 ⊗ I) ◦ CM .

Claim. The image of V ⊗ C|η〉 under U is contained in V ⊗ Y where Y ⊆ CG is a submodule
satisfying I(Y ) = I(V ⊗t).

This is readily proved by induction and Lemma 3.2. For instance, by Lemma 3.2 the image of
V ⊗C|η〉 under CM is contained in V ⊗Y1 where Y1 is a submodule with I(Y1) = I(V ). The next
part of U is U1 ⊗ I which sends V ⊗ Y1 to itself. Now another CM is applied and by Lemma 3.2
this sends V ⊗ Y1 to V ⊗ Y2 where I(Y2) = I(V ⊗ Y1) = I(V ⊗2).

Therefore the inital state U |ψ, η〉 belongs to the subspace V ⊗Y , which means that the algorithm
A′ may be simulated by a single query algorithm to the oracle I⊗La acting on the subspace V ⊗Y .
Note that the irreducibles appearing in this subspace are I(1⊕ dimV ⊗ Y ) = I(Y ) = I(V ⊗t).
Hence Lemma 2.3 implies there exists a single-query algorithm using the representation V ⊗t which
achieves the same success probability as A′. As noted in Lemma 2.2 this is the same as a t-query
parallel algorithm using the representation V . This concludes the proof of Lemma 3.4.

Corollary 3.5. The optimal t-query success probability for an algorithm solving an instance of
coset identification (G,V, π, f) is equal to the optimal single-query success probability achievable
solving the instance (G,V ⊗t, π⊗t, f).

4 Application to symmetric oracle identification
Symmetric oracle discrimination is the following task: given oracle access to a symmetric oracle

hiding a group element a ∈ G, determine a exactly. This is the special case of coset identifi-

cation in which H = {e}. Thus an instance of this problem is determined by a finite group G

and a (finite-dim) unitary representation π : G → U(V ). The following theorem computes the
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success probability of a single-query algorithm and is proved by Bucicovschi, Copeland, Meyer and

Pommersheim:

Theorem 4.1. ([BCMP16], Theorem 1) Suppose G is a finite group and π : G→ U(V ) a unitary
representation of G. Then an optimal single-query algorithm to solve symmetric oracle discrimi-
nation succeeds with probability

Popt = dV
|G|

where
dV =

∑
χ∈I(V )

χ(e)2.

The result of the previous section tells us that parallel algorithms are optimal for symmetric

oracle discrimination.

Theorem 4.2. Suppose G is a finite group and π : G→ U(V ) a unitary representation of G. Then
an optimal t-query algorithm to solve symmetric oracle discrimination succeeds with probability

Popt = dV ⊗t

|G|

where
dV ⊗t =

∑
χ∈I(V ⊗t)

χ(e)2.

Proof. Theorem 2.1 tells us that a t-query parallel algorithm achieves the optimal success proba-
bility. As noted this is equivalent to a single-query algorithm using the representation π⊗t : G→
U(V ⊗t). Now apply Theorem 4.1.

To express the exact and bounded error query complexity of symmetric oracle discrimination

we’re compelled to make the following definitions.

Let V denote a CG-module. The quantum base size, denoted γ(V ), is the minimum t for which

every irrep of G appears in V ⊗t. If no such t exists then γ(V ) =∞. The bounded error quantum
base size, denoted γbdd(V ) is the minimum t for which

1
|G|

∑
χ∈I(V ⊗t)

χ(e)2 ≥ 2/3.

If (G,V, π) is a case of symmetric oracle discrimination then by Theorem 4.2 the number of

queries needed to produce a probability 1 algorithm is γ(V ). That is, the exact quantum query

complexity of the problem is equal to the quantum base size of V . Similarly the bounded error

query complexity is γbdd(V ).

It may happen that one of these quantities is infinite. However when V is a faithful represen-

tation then a classical result attributed to Brauer and Burnside ([Isa76], Theorem 4.3) guarantees

that every irrep of G appears in one of the tensor powers V ⊗0, V, V ⊗2, . . . , V ⊗m−1 where m is the

number of distinct values of the character of V . If V contains a copy of the trivial representation,

then we can say that every irrep of G is contained in some tensor power V ⊗t for some t. Hence in

this case (with V faithful and containing a copy of the trivial irrep) both γ(V ) and γbdd(V ) are

finite.

In particular, this occurs whenever we “quantize” a classical symmetric oracle discrimina-

tion problem. This is the learning problem specified by a finite set Ω and a homomorphism

G → Sym(Ω). A query to an oracle hiding a ∈ G consists of inputting ω ∈ Ω and receiving
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a · ω. The learner must determine the hidden group element (or permutation) a. The quantized

learning problem uses the homomorphism G → U(CΩ) sending elements of G to permutation

matrices. (Such a representation is called a permutation representation.) Then the quantized

learning problem is faithful if the original problem is faithful and the CG-module contains a copy

of the trivial representation, namely span{
∑
ω∈Ω |ω〉}.

This is precisely the situation we would like to study because we can compare the classical and

quantum query complexity. Classically the exact and bounded error query complexities are equal,

since if a classical algorithm does not use enough queries to identify the hidden permutation with

certainty then it must make a guess between at least 2 equally likely permutations which behave

the same on all the queries that were used, resulting in a success rate of at most 1/2.

• Suppose Ω = {1, . . . , n} hosts the defining permutation representation of G = Sn. Then

n− 1 queries are required to determine a hidden permutation σ.

• If we take the same action but restrict the group to An ≤ Sn then we need n− 2 queries to

determine a hidden element σ ∈ An.

• Consider the action of the dihedral group Dn on the set of vertices of an n-gon. Then 2
queries are required to determine a hidden group element.

In general the classical query complexity is a well-known invariant of a permutation group G

denoted b(G) called the minimal base size or just base size of G [LS:02]. It may be defined to be the

length of the smallest tuple (ω1, . . . , ωt) ∈ Ωt with the property that (g ·ω1, . . . , g ·ωt) = (ω1, . . . , ωt)
if and only if g = 1. From the definition it is clear that the base size agrees with the non-adaptive

classical query complexity of the problem. In fact, it is also equal to the adaptive query complexity,

since if a sequence of adaptive guesses (ω1, . . . , ωt) suffices to identify a particular hidden g ∈ G,

then the same sequence of guesses works for every element of the group. This means any optimal

algorithm may be implemented non-adaptively. Thus the classical query complexity of symmetric

oracle discrimination of G ≤ Sym(Ω) is the base size of G and the quantum exact (bounded error)

query complexity is the (bounded error) quantum base size. We are naturally led to a broad

group theoretic problem:

Question. What are the relationships between b(G), γ(CΩ) and γbdd(CΩ)?

We are not aware of any direct comparison of these quantities in the group theory literature.

Here we only compute the various quantities for some special cases. We saw earlier that b(Sn) =
n− 1. We will prove

Theorem 4.3. Let γ, γbdd denote the quantum base sizes for Sn acting on {1, . . . , n}. Then

1. γ = n− 1 queries are necessary and sufficient for exact learning.

2. γbdd = n − 2
√
n + Θ(n1/6) queries are necessary and sufficient to succeed with probability

2/3.

3. In fact, for any ε ∈ (0, 1), n− 2
√
n+ Θ(n1/6) queries are necessary and sufficient to succeed

with probability 1− ε.

Proof. Recall that the irreducible characters of Sn are parametrized by partitions of n which can
be written either as a sequnce [λ1, . . . , λn] or as a Young diagram with n total boxes and λi

Accepted in Quantum 2021-03-03, click title to verify. Published under CC-BY 4.0. 12



boxes in the ith row. Let V = C{1, . . . , n} denote the CG-module corresponding to the defining
permutation representation of Sn. Then V decomposes as a sum of two irreducibles:

V = V[n] ⊕ V[n−1,1].

We note that V[n] is the trivial representation. A well-known rule says that if Vλ is a simple
representation corresponding to the Young diagram λ then the irreps appearing in V ⊗ Vλ

I(V ⊗ Vλ) = {Vµ | µ ∈ λ±}.

where λ± is the set of Young diagrams obtained from λ by adding then removing a box from
lambda. In particular, this shows by induction that

I(V ⊗t) = {Vµ | µ has at least n− t columns}.

We see that n − 1 queries are required until every irreducible is contained in V ⊗t (in particular,
the sign representation corresponding to the partition [1n] = [1, 1, . . . , 1] is not included in V ⊗t

unless t ≥ n− 1). This proves part (1) of the theorem.
To prove part (2) we must examine more closely the set It = I(V ⊗t) consisting of all partitions

with at least n− i columns (i.e. λ1 ≥ n− i). We are interested in the sum

dt := dV ⊗t =
∑

χ∈I(V ⊗t)

χ(e)2.

It is well known that if χ is an irrep corresponding to the Young diagram λ then χ(e) is equal
to the number of standard tableaux of shape λ ([Sag01], Theorem 2.5.2). Hence χ(e)2 is equal
to the number of pairs of standard tableaux of shape λ. Now by the Robinson-Schensted corre-
spondence, the sum above is equal to the number of sequences of the numbers {1, . . . , n} whose
longest increasing subsequence is at least n − t (see e.g. [Sag01], Theorem 3.3.2). Next, a deep
result of Baik, Deift and Johannson [BDJ99] identifies the distribution of the ln, the length of
the longest increasing subsequence of a random permutation of n elements, as the Tracy-Widom
distribution (which also governs the largest eigenvalue of a random Hermitian matrix) of mean
2
√
n and standard deviation n1/6. In particular, Theorem 1.1 of [BDJ99] asserts that if F (x) is

the cumulative distribution function for the Tracy-Widom distribution, then

lim
n→∞

Prob

(
ln − 2

√
n

n1/6 ≤ x
)

= F (x)

Let c be any real number. If we use t = n− 2
√
n+ cn1/6 queries, then our success probability will

be

Prob(ln ≥ n− t) = 1− Prob(ln < 2
√
n− cn1/6) = 1− Prob

(
ln − 2

√
n

n1/6 < −c
)
→ 1− F (−c)

Thus for any ε ∈ (0, 1), if we wish to succeed with probability 1 − ε, it will be necessary and
sufficient to use t = n− 2

√
n+ cn1/6 queries, where c = −F−1(ε) (for n sufficiently large).

Here is the analogous result for identifying an element of the alternating group.

Theorem 4.4. Consider the standard action of An acting on {1, . . . , n}. Then the quantum base
sizes are given as follows.

1. γ = n− d
√
ne are necessary for exact learning.

2. γbdd = n−2
√
n+Θ(n1/6) are necessary and sufficient to succeed with probability 2/3. In fact,

for any ε ∈ (0, 1), n− 2
√
n+ Θ(n1/6) are necessary and sufficient to succeed with probability

1− ε.
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Proof. Recall the following facts about the representation theory of An. The conjugate of a par-
tition λ is the partition λ∗ obtained by swapping the rows and columns of λ; in other words
λ∗ = (λ∗1, λ∗2, . . . ) where λ∗i = the number of boxes in the ith column of λ. For each partition λ of
n that is not self-conjugate, i.e. λ 6= λ∗, the restriction of Vλ to An is an irreducible representation
Wλ of An. Also, Wλ = Wλ∗ . For self conjugate λ, the representation V λ breaks up into two
distinct irreducible representations W+

λ and W−λ of equal dimension.
Recall from the previous proof that after t queries, we get copies of all the Vλ such that

λ1 ≥ n − t. Observe that for any partition λ, we must have either λ1 ≥ d
√
ne or λ∗1 ≥ d

√
ne.

(If both fail, the partition fits into a square of side length d
√
ne − 1, which contains fewer than n

boxes.) It follows that after t = n − d
√
ne queries, for any λ, we have picked up a copy of Vλ or

Vλ∗ . Hence we have every irreducible representation of An. Therefore, n − d
√
ne queries suffice

for exact learning. Showing that that fewer queries cannot suffice is similar. Here we make the
observation that there exists a partition λ such that λ1 < d

√
ne + 1 and λ∗1 < d

√
ne + 1, since n

boxes can be packed into a square of side length d
√
ne. It follows that t = n − d

√
ne − 1 queries

do not pick up the Vλ or Vλ∗ for such λ. Thus, we do not get every irrep of An.
We now examine the bounded error case. For a positive integer t, let pt be the success prob-

ability of the optimal t-query algorithm for identifying a permutation of Sn and let qt be the
corresponding probability for An.

Let V denote the t-fold tensor power of the defining representation of Sn. We can decompose
V as a direct sum of irreps of Sn and if we know which Vλ appear we can determine which irreps
of An appear in V . In particular, each time we have a non-self-conjugate λ such that Vλ appears
in V , we will have Wλ appearing in V . Let’s consider the contribution of this appearance to the
success probability pt and qt, which is the square of the dimension divided by the order of the
group. Since the dimension of Vλ equals the dimension of Wλ, while the order of Sn is twice the
order of An, the contribution to qt is twice the contribution to pt.

Now if λ is self-conjugate then Vλ decomposes into two irreps of Sn of equal dimensions. The
sum of the squares of these two irreps is thus one-half the square of the dimension of Vλ. Once we’ve
divided by the sizes of the groups, we see that the contribution to qt is equal to the contribution
to pt.

We have thus seen that for any λ the contribution to qt is either 2 or 1 times the contribution
to pt. It follows that

pt ≤ qt ≤ 2pt
Thus for qt ≥ 2/3 we must have pt ≥ 1/3, which as we showed in Theorem 4.3 requires n− 2

√
n+

Θ(n1/6) queries. On the other hand, if we are given n−2
√
n+Θ(n1/6) queries, we achieve pt ≥ 2/3,

which forces qt ≥ 2/3.

The two theorems above show that there is very little speedup possible when trying to identify

a permutation from the symmetric group or the alternating group. For the alternating group, one

can at least get by with
√
n fewer queries for exact quantum learning. Here there is an analogy

to Van Dam’s problem of exactly learning the value of an n-long bitstring using queries to its bits

[van98]. Exact learning requires n queries. However, if we are guaranteed in advance that the

parity of the string is even, then only bn/2c queries are required for exact learning. To see this

using the techniques of the current paper, we argue as follows. Let G be the subgroup Zn2 consisting

of all strings of even parity. If we are allowed t queries, then we can access those representations ρx
of Zn2 corresponding to strings x of Hamming weight less than or equal to t (see also the remarks

in Section 7.3). If x̄ is the bitwise complement of x, then ρx and ρx̄ take the same values on G.

Now, for any string x, one of x and x̄ will have Hamming weight less than or equal to bn/2c. Hence

every representation of G can be accessed by bn/2c queries to the oracle, and we will succeed with

probability 1.
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5 Query complexity of coset identification
In this section we derive a formula for the optimal success probability of a t-query algorithm

to solve coset identification. In light of our previous result on parallelizability (Corollary 3.5),

this boils down to finding a formula in the single-query case. This will directly generalize the

single-query results of [BCMP16] used in Section 4.

To state the result we fix some notation. Suppose (G,V, π, f) is an instance of coset identi-

fication with H the preimage of f(e). Given an H-representation W let W ↑ denote the induced

representation of W (which is a representation of G; see Section 5.1.1 below for more details.)

Likewise if W is a CG-module then we denote by W ↓ the CH-module obtained by restriction to

H. Recall that if V is a CG-module then I(V ) denotes the set of all irreducible characters of G

appearing in V . We sometimes use the notation IG(V ), IH(V ) to emphasize which group we are

considering. Finally, given two representations A and B we let

AB := the maximal subrepresentation of A such that I(AB) ⊆ I(B).

Thus AB denotes the sum of all the isotypical components of A which correspond to an irreducible

isotype appearing in B. We will be interested in the quantities

dimAB
dimA

which can be understood as the fraction of A which is shared with B.

Theorem 5.1. An optimal single-query algorithm to solve the instance (G,V, π, f) of coset iden-
tification succeeds with probability

Popt = max
Y ∈Irr(H)

dim (Y ↑)V
dim Y ↑

.

In words: to find the optimal success probability, you look at an irrep Y of H which appears

in V ↓. Then you examine the fraction of Y ↑ which is shared with V . Finally take the maximum

over all irreps Y appearing in V ↓.

From this theorem we can quickly deduce Theorem 4.2, the single-query result for symmetric

oracle identification. This is the special case when H is the trivial group. Then H has only one

irrep, namely the trivial representation 1, and 1
↑ is isomorphic to CG. Hence the formula we get

from Theorem 5.1 is

Popt = dim(CG)V
|G|

= 1
|G|

∑
χ∈I(V )

χ(e)2

which is the formula of Theorem 4.2.

The next two sections are devoted to the proof of Theorem 5.1. First we prove the lower bound

(i.e. existence of a state and measurement achieving the desired success probability) and then we

prove the upper bound (optimality of that success probability).

5.1 The lower bound
First we collect some facts concerning induced representations and averaging operators needed for

the proof of Theorem 5.1. A fine treatment of the subject is contained in Serre’s book [Ser96].
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5.1.1 Induced Representations

Suppose H is a subgroup of a finite group G and let Y denote a representation of H. Note that

CG admits a right H-action. The representation of G induced from Y is

Y ↑
G
H = CG⊗CH Y.

When H and G are understood we simply write Y ↑. Similarly if W is a representation of G then it

is also a representation of H, called the restriction of W to H. We denote it by W ↓
G
H or simply W ↓.

From the definition of induced representations, we can write

Y ↑ =
⊕
t

t⊗ Y

where t ranges over a set of coset representatives for H. Conversely, if a representation W of G

contains an H-invariant subspace W0 such that

W =
⊕
t

tW0

where t again ranges over a set of coset representatives for H, then W is isomorphic to W ↑0 as G

representations.

In our situation all representations are unitary. In particular if Y is a unitary representation

of H then Y ↑ is equipped with the inner product determined by requiring the subspaces t⊗ Y to

be pairwise orthogonal, and translating the inner product of Y to each subspace t⊗ Y . With this

inner product Y ↑ is a unitary representation of G. We will often denote the orthogonal projection

onto e⊗Y by E. Then the orthogonal projection onto t⊗Y is tEt−1, and we have
∑
t tEt

−1 = I.

5.1.2 Averaging operators

Given a CG-module V we can define the averaging operator, which turns an arbitrary linear map

A : V → V into a G-invariant one:

RG : EndC(V )→ EndG(V )

RG(A) := 1
|G|

∑
g∈G

gAg−1.

Note that RG(A) commutes with every g ∈ G so that indeed RG(A) is G-invariant, i.e. RG(A) ∈
EndG(V ). If B is a G-invariant operator then RG(BA) = BRG(A). The map RG is trace-

preserving, so in particular if p is a projection then RG(p) is non-zero, since it has non-zero trace.

If V contains only a single isotype of irrep, i.e. V ∼= Y ⊗ Cm for some irrep Y then RG is closely

related to the partial trace with respect to the subspace Y :

RG(A) = 1
dimY

I ⊗ TrY (A). (1)

5.1.3 Proof of the lower bound

Before giving the proof of the lower bound in Theorem 5.1 we prove a preliminary proposition.

If R is a algebra over C, V an R-module and W ≤ V a linear subspace, we let R ·W denote

the submodule of V generated by W (i.e. the smallest submodule containing the subspace W ).

Similarly for r ∈ R we let r ·W denote the subspace {rw : w ∈W}.

Accepted in Quantum 2021-03-03, click title to verify. Published under CC-BY 4.0. 16



Proposition 5.2. Suppose Y is an irreducible unitary representation of H (a subgroup of G). Also
suppose V is a G-subrepresentation of Y ↑. Let E denote orthogonal projection onto e ⊗ Y ⊂ Y ↑.
Then there exists a unit vector ψ ∈ V such that

〈ψ|E|ψ〉 = dimV

dimY ↑
.

Remark. In Proposition 5.7 we will prove this is an upper bound for 〈ψ|E|ψ〉 over all unit

vectors ψ ∈ V .

Proof. Let ΠV denote the G-invariant orthogonal projection onto V . Since Y is irreducible, E is
a minimal idempotent in EndH(Y ↑). Therefore, since ΠV also belongs to EndH(Y ↑), we know
EΠV E is a scalar times E. In turn this implies ΠV EΠV is a scalar multiple of an orthogonal
projection, since it is self-adjoint and

(ΠV EΠV )2 = ΠV EΠV EΠV = scalar ·ΠV EΠV .

The image of ΠV EΠV is an H-invariant subspace of V which is either 0 or isomorphic to Y .
Let this subspace be Y ′, so we have

ΠV EΠV = λΠY ′ (2)

for some non-zero scalar λ ∈ C. We will also use the fact that

ΠY ′EΠY ′ = λΠY ′ , (3)

which results from Eq. (2) by multiplying the equation by ΠY ′ on the left and right. Next, we
claim that Y ′ is not zero (so it is in fact isomorphic to Y as an H-module). Indeed, we have

CG · Y ′ =
∑
t

t · Y ′ =
∑
t

Im(ΠV tEt
−1ΠV ) ⊃ Im(ΠV (

∑
t

tEt−1)ΠV ) = Im(ΠV ) = V

where the sum is over a set of coset representatives of H. This shows that Y ′ is non-zero. In
particular we have dim Y ′ = dimY . We can now compute the scalar λ via

dimV = Tr(ΠV ) = Tr(
∑
t

ΠV tEt
−1ΠV ) (since

∑
t

tEt−1 = I)

= Tr(
∑
t

tΠV EΠV t
−1) (since ΠV commutes with the action of G)

= λ
∑
t

Tr(tΠY ′t
−1) (by Eq. 2)

= λ|G : H|dimY ′ = λ dimY ↑

which yields λ = dimV
dimY ↑

.

Finally, let |ψ〉 be any unit vector in Y ′. Consider the rank-1 projection |ψ〉〈ψ| : Y ′ → Y ′. We
apply the averaging operator RH (see Section 5.1.2) to get RH(|ψ〉〈ψ|) = 1

|H|
∑
h∈H h|ψ〉〈ψ|h−1.

The space of H-invariant maps from Y ′ to Y ′ is 1-dimensional (by Schur’s Lemma) and spanned
by ΠY ′ . Hence RH(|ψ〉〈ψ|) is a scalar multiple of ΠY ′ , and by taking traces we find RH(|ψ〉〈ψ|) =

1
dimY ΠY ′ .
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Using this we compute

〈ψ|Eψ〉 = Tr(|ψ〉〈ψ|E) = Tr( 1
|H|

∑
h∈H

h|ψ〉〈ψ|h−1E) (since E is H-invariant)

= Tr( 1
dimY

ΠY ′E) (by above discussion)

= 1
dimY

Tr(ΠY ′EΠY ′)

= 1
dimY

Tr(λΠY ′) (by Eq. 3 above)

= dimV

dimY ↑
(since Tr(ΠY ′) = dim Y , and λ = dimV

dimY ↑
)

as needed.

Proof of Theorem 5.1, lower bound. Let Y be an irreducible constituent of V↓ which maximizes
the quantity

dim(Y ↑)V
dimY ↑

.

Let V ′ denote the G-subrepresentation (Y ↑)V of Y ↑ and again let E denote the orthogonal pro-
jection onto the subspace e⊗Y ⊂ Y ↑. Then by Proposition 5.2 there exists a unit vector |ψ〉 ∈ V ′
such that

〈ψ|E|ψ〉 = dimV ′

dimY ↑
= dimY ↑V

dimY ↑
.

Now consider the oracle problem given by (G,V ′, π′, f) (i.e. the coset identification problem
where the oracle is represented on V ′ rather than V ). Let ΠV ′ denote the G-invariant orthogonal
projection onto V ′. We define a single-query algorithm for (G,V ′, π′, f) using no ancilla, the
input state |ψ〉, and projective measurement {tΠV ′EΠV ′t

−1}t where t ranges over a set of coset
representatives forH (so measuring outcome t uniquely determines a coset ofH). The measurement
is used to distinguish the density operators {ρt = tρt−1} where ρ = 1

|H|
∑
h∈H h|ψ〉〈ψ|h−1. Note

that the support of ρ is contained in V ′, since |ψ〉 ∈ V ′ and V ′ is G-invariant. Therefore ρΠV ′ =
ΠV ′ρ = ρ. Using this, we compute the success probability as

Psucc = 1
|G : H|

∑
t

Tr(ρttΠV ′Et
−1ΠV ′)

= 1
|G : H|

∑
t

Tr(ρttΠV ′EΠV ′t
−1) (since ΠV ′ is G-equivariant, so commutes with t−1)

= 1
|G : H|

∑
t

Tr(ρΠV ′EΠV ′) (since the trace is cyclic, and t−1ρtt = ρ)

= Tr(ρE) (since the trace is cyclic, and ρΠV ′ = ΠV ′ρ = ρ)

= 〈ψ|E|ψ〉 = dimY ↑V
dimY ↑

.

This shows that there is an algorithm for (G,V ′, π′, f) which succeeds with probability dimY ↑
V

dimY ↑
.

Since V ′ = (Y ↑)V only contains irreps which are also contained in V , Lemma 2.4 implies there is
also an algorithm for (G,V, π, f) which succeeds with the same probability.

Remark. In applying Lemma 2.4 to produce an algorithm for (G,V, π, f), one may have to

introduce an ancilla register, to ensure that irreps appear with sufficiently large multiplicity to

allow an embedding of V ′ into the workspace.
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5.2 The upper bound
In this section we prove the upper bound of Theorem 5.1 using a minimum-error quantum state

discrimination approach [EMV06]. Before explaining the strategy to obtain the bound, we review

the set-up. We fix an instance of coset identification (G,V, π, f : G → X). The subgroup H is

the preimage of f(e), and the elements of X may be identified with the left cosets of H. A single-

query algorithm uses an initial state |ψ〉 ∈ V and feeds it to the oracle, which is a hidden element

a sampled uniformly from G. Afterwards, a measurement {Ex}x∈X is applied with the goal of

recovering f(a). With a choice of initial state fixed, the task of finding an optimal measurement

{Ex} amounts to finding an optimal measurement to discriminate the mixed states {ρx}x∈X , where

ρx = |X|
|G|

∑
g∈G
f(g)=x

g|ψ〉〈ψ|g−1.

Indeed, the success probability of the algorithm is equal to the probability that the measurement

{Ex} successfully discriminates the mixed states {ρx}, namely

Psucc = 1
|X|

∑
x∈X

Tr(Exρx).

We will prove that this success probability is bounded above by the quantity given in Theorem

5.1, which involves induced representations. We now provide an outline of the proof to give an

indication of how induced representations enter the picture.

To take advantage of symmetry in the problem, note that the density matrices {ρx} always

satisfy

ρg·x = gρxg
−1.

We say a set of operators with this symmetry is orbital (a precise definition is given below). We

first argue that any optimal measurement to distinguish an orbital set of density matrices can

be modified to produce another optimal measurement which is itself orbital (Lemma 5.3). Next

we aim to simplify the problem further by showing that any orbital POVM can be replaced by

a measurement which is both orbital and projective. To do so requires embedding the original

CG-module V into a larger one W by adding an ancilla register. This is the content of Lemma

5.5, which is a “symmetric” version of the usual result that any POVM can be simulated using

projective measurements and ancilla registers. As a result of this lemma we may make the following

assumptions about an optimal single query algorithm, which uses the larger Hilbert space W :

1. The measurement operators {Ex}x∈X are projective and orbital.

2. The initial state |ψ〉 belongs to a G-invariant subspace of W which is isomorphic to V .

The existence of a projective orbital measurement implied by (1) is a strong condition on the

structure of W : using the completeness relation, W can be written as the direct sum of the images

of the measurement operators {Ex}. The subspace Y which is the image of Ex0 is left invariant

by H, and the other subspaces are obtained through translation by a coset representative. This

realizes W as the induced representation Y ↑. Finally, in this restricted setting (incorporating the

assumption (2) that |ψ〉 ∈ V ) we are able to bound the success probability by decomposing Y into

irreducible H-subrepresentations, and then applying a critical inequality (Proposition 5.7) that

covers the situation when Y is irreducible. We now give the details.

With a given unitary representation V of G and a fixed G-set X understood we say a set of

operators {Ax}x∈X (on V ) is orbital if gAxg
−1 = Ag·x for all x and g. The density matrices for a

single query algorithm for coset identification form an orbital set.
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Lemma 5.3. Suppose {ρx}x∈X is an orbital set of density matrices. Then there exists an optimal
measurement to distinguish the states {ρx} which is orbital.

Proof. Eldar, Megretski, Verghese give the proof when X = G with the action of left multiplication
([EMV04], Section 4.3) and it works in this setting as well. We give the proof for the reader’s
convenience. Suppose {Ex}x∈X is an optimal measurement. Then we define new measurement
operators {Êx}x by

Êx = 1
|G|

∑
g∈G

gEg−1·xg
−1.

We claim that {Êx} is an orbital POVM which discriminates the states {ρx} with the same success
probability as {Ex}. Each operator Êx is a nonnegative combination of positive semi-definite
operators, hence is positive semi-definite. They satisfy the completeness relation:∑

x∈X
Êx = 1

|G|
∑
x∈X
g∈G

gEg−1·xg
−1 = 1

|G|
∑
g∈G

I = I.

The completness relation for {Ex} is used in the second equality. We check that the POVM {Êx}
is orbital:

hÊxh
−1 = 1

|G|
∑
g∈G

hgEg−1·xg
−1h−1 = 1

|G|
∑
k∈G

kEk−1h·xk
−1 = Êh·x.

To complete the proof it suffices to show that the new measurement discriminates the states {ρx}
with the same probability as the original measurement. Indeed, we have

1
|X|

∑
x∈X

Tr(Êxρx) = 1
|X||G|

∑
x∈X

∑
g∈G

Tr(gEg−1·xg
−1ρx) = 1

|X||G|
∑
g∈G

∑
x∈X

Tr(Eg−1·xρg−1·x) =

= 1
|G|

∑
g∈G

 1
|X|

∑
y∈X

Tr(Eyρy)

 = 1
|X|

∑
y∈X

Tr(Eyρy).

The second equality follows from the orbital assumption ρg−1·x = g−1ρxg, and the other steps are
index substitutions.

For the next result we use the following fact (cf. [NC11], Exercise 2.67):

Lemma 5.4. Suppose V is a unitary representation of G, W a subrepresentation, and C : W → V

a CG-module map which preserves inner products. Then C can be extended to V , meaning there
is a unitary CG-module isomorphism U : V → V such that U coincides with C on W .

Proof. Let Y denote the orthogonal complement of W and Y ′ the orthogonal complement of C(W ).
Since C preserves inner products, it is injective, so C(W ) ∼= W as CG-modules. Hence Y ∼= Y ′

as CG-modules, and there exists an inner product preserving isomorphism D : Y → Y ′. Now the
desired unitary operator U is given by

U(x) =
{
C(x) x ∈W
D(x) x ∈ Y.

The following result is an equivariant version of the argument given by Chuang and Nielsen to

show that arbitrary measurement operators can be simulated using projective measurements and

ancilla spaces (see [NC11], Section 2.2.8).

Lemma 5.5. Suppose {Ex} is an orbital POVM on the space V . Then there exists a unitary
representation W and an inner product preserving CG-module embedding

ι : V →W
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together with a projective orbital measurement {Ex} on W such that for any state |ψ〉, the mea-
surement statistics by measuring |ψ〉 with {Ex} are identical to those given by the state ι|ψ〉 and
measurement {Ex}.

Proof. Let W be the space V ⊗CG and fix a basepoint x0 of the G-set X.Let Mx = (Ex)1/2 be the
non-negative square root of Ex. The uniqueness of square roots implies that the set M = {Mx}
is orbital. In addition, these constitute a set of measurement operators for the POVM, meaning
M∗xMx = Ex.

Now let CM be the controlled-M operator acting on W via

CM|ψ, g〉 =
√
|X|Mg·x0 |ψ〉 ⊗ |g〉.

Note that CM is a CG-module endomorphism of W = V ⊗ CG, since

CM(h · |ψ, g〉) = CM|hψ, hg〉 =
√
|X|Mhg·x0h|ψ〉 ⊗ |hg〉

=
√
|X|hgMx0g

−1|ψ〉 ⊗ |hg〉 = h · CM|ψ, g〉.

For the third equality we used the fact that M is orbital, i.e. Mg·x0 = gMx0g
−1. Now CM is not

necessarily invertible, but we claim that CM preserves inner products on the subspace V ⊗ |η〉,
where |η〉 = 1√

|G|

∑
g∈G |g〉 is the equal superposition vector in CG:

〈CM (|ψ, η〉) | CM |φ, η〉 = 1
|G|

∑
g,h∈G

〈CM (|ψ, g〉) | CM |φ, h〉 (by the def. of |η〉)

= |X|
|G|

∑
g,h∈G

〈Mg·x0 |ψ〉 ⊗ |g〉 | Mh·x0 |φ〉 ⊗ |h〉〉 (by the def. of CM)

= |X|
|G|

∑
g∈G
〈ψ|Eg·x0 |φ〉 (since 〈g|h〉 = δgh and M∗xMx = Ex)

= |X|
|G|

∑
h∈H

∑
x∈X
〈ψ|Ex|φ〉 (by writing g = th where t · x0 = x)

= |X|
|G|

∑
h∈H

〈ψ|φ〉 = 〈ψ|φ〉 (by the completeness relation and |H| = |G|/|X|).

Therefore, by the previous lemma, there exists a unitary CG-module endomorphism U which
restricts to CM on V ⊗ |η〉. We are ready to define the embedding ι and measurement {Ex} that
satisfy the claim of the theorem.

We take ι to be the inclusion of V as V ⊗ |η〉:

ι|ψ〉 = |ψ〉 ⊗ |η〉.

Clearly ι is an inner product preserving CG-module embedding. We define the projective mea-
surement {Ex} by

Ex = U−1

( ∑
g:g·x0=x

I ⊗ |g〉〈g|

)
U.

Here I denotes the identity on V . The operators {Ex} constitute a projective measurement, and
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we check that they form an orbital set. Let h ∈ G. Then

hExh
−1 = U−1h

( ∑
g:g·x0=x

I ⊗ |g〉〈g|

)
h−1U (since U is a CG-module map)

= U−1

( ∑
g:g·x0=x

I ⊗ |hg〉〈hg|

)
U (since h acts by πV (h)⊗ h on W = V ⊗ CG)

= U−1

( ∑
k:k·x0=h

I ⊗ |k〉〈k|

)
U = Eh·x.

Now suppose ι|ψ〉 = |ψ〉 ⊗ |η〉 is measured with the projective measurement {Ex}. Then the
probability of reading outcome x is

〈ψ, η|Ex|ψ, η〉 = 〈ψ, η|U−1

( ∑
g:g·x0=x

I ⊗ |g〉〈g|

)
U |ψ, η〉

=
〈
CM(|ψ, η〉)|

( ∑
g:g·x0=x

I ⊗ |g〉〈g|

)
CM|ψ, η

〉
= |X|
|G|
〈(∑

h∈G

Mh·x0 |ψ〉 ⊗ |h〉

)
|

( ∑
g:g·x0=x

I ⊗ |g〉〈g|

)(∑
h′∈G

Mh′·x0 |ψ〉 ⊗ |h′〉

)〉
= |X|
|G|

∑
g:g·x0=x

〈Mg·x0ψ|Mg·x0ψ〉 = |X|
|G|

∑
g:g·x0=x

〈Mxψ|Mxψ〉

= 〈ψ|Ex|ψ〉.

The first three equalities are definitions, the fourth expands the multiplication, the fifth is nota-
tional and the last follows since the number of g for which g · x0 = x is equal to |G|/|X| for all
x ∈ X (since X is a transitive G-set). This proves the lemma.

As a result of the lemma, any orbital measurement to distinguish orbital states in a CG-module

Y can be simulated by a projective orbital measurement in a larger CG-module W . The next

lemma explains that the existence of a projective orbital measurement implies a decomposition of

the Hilbert space W that realizes W as a representation induced from H.

Lemma 5.6. Suppose {Ex}x∈X is a projective orbital measurement on a CG-module W . Let Wx

denote the image of Ex. Then Wf(e) is an H-representation and W ∼= W ↑f(e).

Proof. If {Ex} is an orbital measurement then hEf(e)h
−1 = Eh·f(e) = Ef(e) for all h ∈ H, i.e.

Ef(e) is a CH-module homomorphism. Hence the image of Ef(e) is invariant under H.

Since the set {Ex}x constitutes a measurement, W =
⊕

xWx. Furthermore, since Eg·f(e) =
gEf(e)g

−1, we have Wg·f(e) = gWf(e). Hence W =
⊕

t tWf(e) where the sum is over a set of
left coset representatives for H. By the characterization of induced representations discussed in
Section 5, this shows W ∼= W ↑x0

.

The lemmas above show that as long as we are willing to embed our original representation V

into a larger representation W , we may assume that W is induced from some representation Y of H

and that the measurement operators are projections corresponding to the direct sum decomposition

of W as an induced representation. In other words, the measurement operator corresponding to

outcome x ∈ X is projection onto t ⊗ Y where t is any element such that t · f(e) = x. The next

lemma is the final key to unlocking the upper bound.

Proposition 5.7. Suppose Y is an irreducible unitary representation of H (a subgroup of G).
Let V be a G-subrepresentation of Y ↑. Let E denote orthogonal projection onto the subspace
e⊗ Y ⊂ Y ↑. Then for any unit vector ψ ∈ V we have

〈ψ|E|ψ〉 ≤ dimV

dimY ↑
.
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Proof. Consider the action of H on Y ↑ and let W denote the Y -isotypic component of Y ↑. Then
W ∼= Y ⊗ Cm as H-representations where m is the multiplicity of the irrep Y in Y ↑↓. Since E is
an H-invariant projection with image isomorphic to Y , we may assume that ψ belongs to W in
addition to V . (Indeed, the support of E is contained in W , so E = ΠWE = EΠW , which implies
〈ψ|E|ψ〉 = 〈ΠWψ|EΠW |ψ〉.) Fix an orthonormal basis {y1, . . . , yd} of Y so that we may write

|ψ〉 =
d∑
i=1

λi|yi, ui〉

where the ui’s are unit vectors in Cm and λi ≥ 0 with
∑
i λ

2
i = 1. We apply the averaging operator

RH of Section 5.1.2 to the projection |ψ〉〈ψ|. By Equation (1) of Section 5.1.2 we have

RH(|ψ〉〈ψ|) = 1
dimY

d∑
i=1

λ2
i (I ⊗ |ui〉〈ui|) .

In particular RH(|ψ〉〈ψ|) ≤ 1
dimY ΠW . Note that since |ψ〉 ∈ V ∩W , the support of RH(|ψ〉〈ψ|) is

also contained in the H-submodule V ∩W . Hence we deduce the stronger inequality

RH(|ψ〉〈ψ|) ≤ 1
dimY

ΠV ∩W .

Now we may estimate 〈ψ|Eψ〉:

〈ψ|Eψ〉 = Tr(E|ψ〉〈ψ|) = Tr(RH(E|ψ〉〈ψ|)) (since RH preserves traces)
= Tr(ERH(|ψ〉〈ψ|) (since E is H-invariant)

≤ 1
dimY

Tr(EΠV ∩W )

≤ 1
dimY

Tr(EΠV ).

Here Tr(EΠV ) can be computed by averaging over a set of coset representatives for H:

Tr(EΠV ) = 1
|G : H|

∑
t

Tr(tEΠV t
−1)

Using that ΠV commutes with the action of G and that
∑
t tEt

−1 = I we have

Tr(EΠV ) = 1
|G : H|

∑
t

Tr(tEt−1ΠV ) =

= 1
|G : H|Tr(ΠV ) = dimV

|G : H| .

Therefore
〈ψ|Eψ〉 ≤ dimV

dimY |G : H| = dimV

dimY ↑
.

We are ready to prove the upper bound in Theorem 5.1.

Proof of Theorem 5.1, upper bound. Let (G,V, π, f) specify an instance of coset identification and
let H denote the stabilizer of a chosen point x0 ∈ X (recall that the codomain of f is a transitive
G-set X). Suppose an optimal single-query algorithm is given by an input state |ψ〉 ∈ V (again
we may assume there is no workspace by absorbing it into V ) and POVM {Êx}. By Lemmas 5.5
and 5.6, there is a (not necessarily irreducible) representation Y of H and CG-submodule of Y ↑
isomorphic to V (which we identify with V ) such that the success probability of our algorithm is
equal to the success probability of an algorithm using input state |ψ〉 ∈ V ⊂ Y ↑ and the projective

Accepted in Quantum 2021-03-03, click title to verify. Published under CC-BY 4.0. 23



measurement {tEt−1}t where E denotes orthogonal projection onto e⊗ Y and t ranges over a set
of coset representatives for H.

Now decompose Y into irreducible H-invariant orthogonal subspaces:

Y = Y1 ⊕ · · · ⊕ Yr.

Then Y ↑ ∼=
⊕

i Y
↑
i as CG-modules. Let Πi denote orthogonal projection onto Y ↑i . Then |ψ〉 can

be decomposed as a combination of orthogonal unit vectors

|ψ〉 = λ1|ψ1〉+ · · ·+ λr|ψr〉

such that each |ψi〉 belongs to Y ↑i . Even more is true: since λi|ψi〉 = Πi|ψ〉 and Πi is a CG-module
map, we know |ψi〉 ∈ (Y ↑i )V .

Note also that E decomposes as E = E1 + · · · + Er where Ei is orthogonal projection onto
e⊗ Yi.

We are ready to bound the success probability of the algorithm. Recall that we are
using the measurement {tEt−1}t to distinguish the density operators {tρt−1}t where ρ =

1
|H|
∑
h∈H h|ψ〉〈ψ|h−1. Then

Psucc = 1
|G : H|

∑
t

Tr((tρt−1)tEt−1) = 〈ψ|E|ψ〉.

Now using the decomposition of |ψ〉 we have

〈ψ|E|ψ〉 =
r∑
i=1
|λi|2〈ψi|Ei|ψi〉.

Now by Proposition 5.7 we have, for all i,

〈ψi|Ei|ψi〉 ≤
dim(Y ↑i )V

dimY ↑i
.

Therefore

Psucc ≤
∑
i

|λi|2
dim(Y ↑i )V

dimY ↑i
≤ max
Y ∈Irr(H)

dimY ↑V
dimY ↑

.

5.3 Query complexity
We now know the success probability of an optimal single-query algorithm solving coset identi-

fication. As in Section 4, we combine this with the fact that an optimal t-query algorithm with

access to the representation V is the same as an optimal 1-query algorithm to V ⊗t to determine

the optimal success probability for t-query algorithms:

Corollary 5.8. Let (G,V, π, f) describe a case of coset identification. Then an optimal t-query
algorithm succeeds with probability

Popt = max
Y ∈Irr(H)

dimY ↑V ⊗t

dimY ↑
.

A straightforward consequence is the following:

Theorem 5.9. Let (G,V, π, f) describe a case of coset identification. Then the zero-error quantum
query complexity of the problem is the minimum t for which there exists some Y ∈ Irr(H) such
that every irrep of G appearing in Y ↑ also appears in V ⊗t.

The bounded error quantum query complexity is the minimum t for which

max
Y ∈Irr(H)

dim(Y ↑)V ⊗t

dimY ↑
≥ 2/3.
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6 New examples of coset identification
6.1 Identifying the coset of the Klein 4 group
Here we present an easy demonstration of the machinery of the previous section. Con-

sider the symmetric group on 4 letters G = S4 with normal subgroup the Klein 4-group

H = {e, (12)(34), (13)(24), (14)(23)}. Given access to the defining permutation representation V

of S4 we would like to identify which coset of H our permutation belongs to. Classically this

requires 2 queries. To determine the quantum complexity we need to know the characters of V

and S4. Of course V is isomorphic to Z2 × Z2 (say, using the generators (12)(34) and (13)(24))
and has 4 characters labelled ψα,β with α, β ∈ {0, 1}. The group S4 has 5 characters parametrized

by partitions of 4, denoted χ[4], χ[3,1], χ[22], χ[2,12] and χ[14]. The restriction/induction rules are

conveniently described in a Bratteli diagram (Figure 4).

ψ0,0 ψ0,1 ψ1,0 ψ1,1

χ[4] χ[3,1] χ[22] χ[2,12] χ[14]

Figure 4: Restriction/induction rules for H < S4. The irreps appearing in V are circled.

The diagram indicates, for instance, that χ↓[2,12] = ψ0,1+ψ1,0+ψ1,1 and ψ↑0,0 = χ[4]+2χ[22]+χ[14].

Finally, we are given access to the defining permutation representation of S4 which decomposes as

V = χ[4] + χ[3,1].

To find the optimal success probability of a single-query algorithm to determine which coset

of H a permutation belongs to, we examine the irreps of H appearing in V . From the diagram

we see that every irrep of H appears in V , so we look at each one. First consider the trivial

representation ψ0,0. The only irrep of S4 that appears in both V and ψ↑0,0 is χ[4], which contributes

a one dimensional subspace to the 6 dimensional ψ↑0,0. Therefore using the irrep ψ0,0 gives a success

probability of 1/6. Now consider ψ0,1. In this case only χ[3,1] appears in both V and ψ↑0,1, and it

contributes 3 dimensions to the 6 dimensional ψ↑0,1. Therefore the success probability using this

irrep is 3/6 = 1/2. The other characters ψ1,0 and ψ1,1 give the same ratio so the optimal success

probability of a single-query quantum algorithm is 1/2 (note a single-query classical algorithm can

do no better than probability 1/6).

That the optimal 2-query success probability is 1 can be verified using the fact that V ⊗2

contains a copy of every irrep of S4 except the sign representation, and so using any of the irreps

ψ0,1, ψ1,0, ψ1,1 we can achieve probability 1.

6.2 An action of the Heisenberg Group
We now consider a natural action of the Heisenberg group over a finite field for which the oracle

identification problem achieves a significant quantum speedup over the best classical algorithm.

For this action, we also show that a single query suffices to solve the coset identification problem,

where the chosen subgroup H is the center of the group.

Specifically, let p be prime and let n be a positive integer. Let G = G(p, n) denote the

Heisenberg group of all (n + 2)-by-(n + 2) matrices with entries in Zp, 1’s on the main diagonal

and whose only other nonzero entries are in the first row and last column. Such matrices are in
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correspondence with triples (x, y, z), with x, y ∈ Znp and z ∈ Zp, where (1, x, z) is the first row of

the matrix and (z, y, 1) is the last column of the matrix. Then G(p, n) is a p-group of order p2n+1.

We consider the usual action of G(p, n) on the set X = Zn+2
p , considered as column vectors, by

matrix-vector multiplication. The corresponding classical oracle identification problem turns out

to have complexity b(G) = n + 1. To see this note that y and z can be determined by the single

query (0, . . . , 0, 1). Further queries give affine conditions on x, and it requires at least n of these

to determine the value of x.

In contrast to the n + 1 queries needed to solve this question classically, we now show that

a single quantum query suffices to solve the problem with high probability, and that two queries

suffice to solve the problem with certainty.

Theorem 6.1. Let G(p, n) denote the Heisenberg group defined above acting by multiplication on
the set of column vectors X = Zn+2

p . Then an optimal single query quantum algorithm solves the
oracle identification problem with probability

Popt = 1− 1
p

+ 2
pn+1 −

1
p2n+1 .

Furthermore, two queries suffices to solve the oracle identification problem with probability 1.

We will prove this theorem shortly. Before doing so, let us consider a related coset identification

problem. Let H < G(p, n) be the subgroup in which x = y = 0. Then H is a subgroup of order

p, and in fact H is the center of G(p, n). The coset identification problem with respect to this

subgroup H asks us to determine the values of x and y. In the classical case, n + 1 queries are

again required. However this time, a single quantum query solves the coset identification problem

with certainty.

Theorem 6.2. Let G = G(p, n) denote the Heisenberg group acting by multiplication on the set of
column vectors X = Zn+2

p . Let H be center of G, the set of all matrices in G for which x = y = 0.
Then the coset identification problem can be solved with a single quantum query with probability 1.

In order to prove these theorems, we must understand the representation theory of G = G(p, n),
which we now describe briefly (for a concise and elegant review, see the letter by M. Isaacs to P.

Diaconis published in the appendix to [Dia]). The group G has p2n one-dimensional irreducible

representations and p − 1 irreducible representations of dimension pn. The one-dimensional rep-

resentations will be denoted χα,β , indexed by tuples α, β ∈ Znp . We identify these representations

with their characters which are given by the formula

χα,β(x, y, z) = ωα·x+β·y,

with ω denoting a primitive p-th root of unity.

The pn dimensional representations denoted ρc, with c ∈ Zp, c 6= 0 are described as follows.

Let U be the vector space of all complex-valued functions on (Zp)n. Fix c ∈ Zp with c 6= 0. Then

there is an irreducible representation ρc of G on U given by

[ρc(x, y, z)f ](w) = ωc(y·w+z)f(w + x).

The character of this representation is given by

θc(x, y, z) =
{
pnωcz if x = y = 0,
0 otherwise.

In order to understand the query complexity of the oracle identification problem we must

decompose the representation V = CX into irreducible representations. Since this representation

comes from a permutation representation of G, each character value χV (x, y, z) is simply the

number of fixed points of the matrix A = (x, y, z). This number of fixed points is determined

by the rank of the matrix A′ = A − I. If (x, y, z) = 0, then A′ has rank 0, and if x and y are
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both nonzero, then A′ has rank 2. In all other cases A′ has rank 1. We thus obtain the following

character values of our given permutation representation V :

χV (x, y, z) =


pn+2 if (x, y, z) = (0, 0, 0)
pn if x 6= 0 and y 6= 0
pn+1 otherwise.

To find the number of copies of the trivial representation χ0,0 appearing in χV , we simply

average these values and obtain 〈χV , χ0,0〉 = pn + 2(p− 1).
Now let φ be any nontrivial irreducible character of G. We compute the number 〈χV , φ〉 of

copies of φ appearing in χV as follows

〈χV , φ〉 = 1
|G|

∑
(x,y,z)∈G

χV (x, y, z)φ(x, y, z) = 1
|G|

∑
(x,y,z)∈G

(χV (x, y, z)− pn)φ(x, y, z)

= 1
|G|

∑
(x,y,z)′

(pn+1 − pn)φ(x, y, z) + (pn+2 − pn)φ(0, 0, 0)

= p− 1
pn+1

[ ∑
(x,y,z)′

φ(x, y, z) + (p+ 1)φ(0, 0, 0)
]

where (x, y, z)′ indicates a sum over those (x, y, z) such that x = 0 or y = 0, but (x, y, z) 6= (0, 0, 0).
In the first line, we used the fact that if φ is nontrivial then 0 = 〈φ,1〉 = 1/|G|

∑
(x,y,z)∈G φ(x, y, z).

Taking φ = θc in this formula, we conclude that V contains p−1 copies of ρc. Taking φ = χα,β ,

we get

〈χV , χα,β〉 =
{
p− 1 if α = 0 or β = 0, but not both

0 if α 6= 0 and β 6= 0.

We conclude that our V contains copies of all irreducible representations of G except the χα,β
for which both α and β are nonzero. The optimal single-query quantum success probability is thus

given by

Popt = 1
|G|

(
|G| −

∑
α,β 6=0

1
)

= 1− 1
p

+ 2
pn+1 −

1
p2n+1 ,

as claimed.

If two queries are allowed, we have access to the representation V ⊗ V . Noting that χα,β =
χα,0 ⊗ χ0,β , it follows that V ⊗ V contains every irreducible representation of G. Hence, there is

a probability 1 algorithm with two quantum queries.

Finally, we turn our attention to the coset identification problem for the subgroup H =
{(0, 0, z)|z ∈ Zp}. To see that there is a probability one algorithm, note that any of the non-

trivial characters of H induces up to pn times one of the ρc. Since ρc is contained in V , it follows

that the coset identification problem can be solved with one query.

6.3 Guessing the sign of a permutation
Suppose there is an unknown permutation g ∈ G = Sn for some n ≥ 2. We wish to learn the sign

of g using queries to the standard action of Sn on {1, ..., n}. This is an instance of the hidden coset

problem where H = An. Classically, n − 1 queries are necessary to determine the sign of g. In

fact, any fewer queries and we do not learn anything about the sign. Quantumly, we have

Theorem 6.3. Let n ≥ 2 and consider the standard action of Sn on {1, . . . , n}. Consider the
hidden coset problem for the subgroup H = An. That is we wish to determine the sign of a hidden
permutation. For exact learning, t = bn2 c quantum queries suffice. With any smaller number of
quantum queries, one cannot do any better than random guessing (p = 1/2.)
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Proof. For facts and notation about representations of Sn and An, we refer the reader to the proofs
of Theorems 4.3 and 4.4.

Let V be the defining representation of Sn, and suppose we use t queries so that we have
access to V ′ = V ⊗t. Suppose λ is a non-self-conjugate partition such that V ′ contains Vλ. Letting
Y = Wλ, we see that Y ↑ consists of one copy of Vλ and one copy of Vλ∗ . Hence the quotient of
dimensions

dim (Y ↑)V ′
dim Y ↑

equals 1 if V ′ contains both Vλ and Vλ∗ and 1
2 if V ′ contains Vλ but not Vλ∗ . Now consider a

self-conjugate partition λ contained in V ′. In this case, if we take Y = W+
λ , then Y ↑ is Vλ. Hence

in this case the quotient of dimensions is 1.
We thus wish to find the smallest t such that V ⊗t contains both Vλ and Vλ∗ for some partition

λ (including the possibility that λ is self-conjugate). For such t, we will have a t-query probability
1 algorithm and for fewer queries we cannot do better than probability 1/2, which is random
guessing.

For even n, the value t = n/2 produces the partition λ = (n/2 + 1, 1, . . . , 1) (with n/2− 1 1’s)
and its conjugate λ∗ = (n/2, 1, . . . , 1) (with n/2 1’s). For odd n, the value t = n−1

2 produces the
self conjugate partition (n+1

2 , 1, . . . , 1) (with n−1
2 1’s). In either case t = bn2 c gives a probability 1

success, and fewer queries give success probability 1/2.

7 Previously studied examples of coset identification
Here we discuss the relation of this work to preceding work. To the authors knowledge, every

previously studied special case of the general coset identification problem uses oracles sampled

from an abelian group. Zhandry [Zha15] addresses this problem (calling it the oracle classification
problem) and provides an expression for the optimal success probability essentially identical to 5.1.

Thus our results are a non-abelian generalization of Zhandry’s work, which was a key inspiration

for the present paper. We briefly explain why Zhandry’s result is equivalent to ours and then

examine some other more specialized and well-known problems.

Coset identification for an abelian group is described by a tuple (A, V, π, f) with A abelian

and f : A → X distinct and constant on the cosets of a subgroup B. We remark that since B

is a normal subgroup it is possible to identify X with the quotient group A/B and f with the

standard homomorphism A→ A/B. Hence coset identification in this instance may also be called

homomorphism evaluation. By Cor. 5.8 the optimal success probability for a t-query algorithm to

determine f(a) is

Popt = max
Y ∈Irr(B)

dimY ↑V ⊗t

dimY ↑
.

Since B is abelian, Y is 1-dimensional and Y ↑ decomposes as |A : B| many distinct A-characters

(corresponding to the characters of A/B). Hence dimY ↑V ⊗t (which by definition is the dimension

of the maximal subspace of Y ↑ containing only characters in V ⊗t) is exactly equal to the number

of shared irreps, i.e. the cardinality of the set I(Y ↑) ∩ I(V ⊗t). As Y varies, these sets partition

I(V ⊗t) into equivalence classes [χ], and by Frobenius reciprocity two characters are equivalent if

and only if their restrictions to B are identical. Hence the equation above can be restated:

Theorem 7.1. (Zhandry, ([Zha15], Theorem 4.1)) The optimal success probability of a t-query
algorithm for abelian coset identification is

Popt = 1
|A : B| max

χ∈I(V ⊗t)
|[χ]|.

Under this interpretation we’re aiming to find the largest collection of characters appearing

in V ⊗t which have the same restriction to B. Zhandry includes several nice applications of the

previous theorem, explained in a linear algebraic framework. Below we readdress a couple of these

problems (polynomial interpolation and group summation) using character theoretic language, and

we revisit the van Dam algorithm [van98].
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7.1 Polynomial interpolation
The polynomial interpolation problem as outlined by Zhandry [Zha15] and Childs, van Dam, Hung

and Shparlinski [CvDHS16] is as follows. Let F = Fq where q = pr for some prime p. Suppose

we have an unknown polynomial f(X) over F of degree less than or equal to d and we wish to

determine f using queries that provide the value f(x) for x ∈ F . That is access to f is provided

via the oracle Uf acting on V = CF ⊗ CF by

Uf : |x, s〉 7→ |x, s+ f(x)〉.

This equation defines a representation on V of the group G of all polynomials of degree less than

or equal to d under addition.

We would like to see which of the characters of G appear in this representation. Let ω be a

primitive p-th root of unity and let Tr denote the trace map from Fq to Fp. The characters of the

additive group F are given by χy with y ∈ F defined by

χy(x) = ωTr(yx).

For y ∈ F , define the character state

|ωy〉 =
∑
s∈F

χy(−s)|s〉.

It is easy to see that

Uf |x, ωy〉 = χy(f(x))|x, ωy〉.

Thus if we let Vx,y denote the 1-dimensional space spanned by |x, ωy〉, we have the decomposition

V =
⊕

Vx,y

into irreducible representations.

The characters of F d+1, which is isomorphic to G, are given, for a ∈ F d+1, by φa, where

φa(c) = ωTr(a·c)

The character of Vx,y is φa, with

a = (y, yx, yx2, . . . , yxd). (4)

To see this note that if f(x) =
∑
ciX

i, then

χy(f(x)) = ωTr(yf(x)) = ωc·(y,yx,yx
2,...,yxd)

Thus the irreps that appear in V are exactly the φa, where a has the form in Equation 4. Since

φa⊗φa′ = φa+a′ , it follows that the k-fold tensor power contains those φb where b can be expressed

as a k-fold sum of vectors of the form in Equation 4. This is exactly in image of the map Z

as described by Childs, van Dam, Hung and Shparlinski [CvDHS16], so we have reproved their

Theorem 1.

The computation of the optimal success probability is now reduced to an alge-

braic/combinatorial problem which is nontrivial to solve (and is achieved in [CvDHS16]). Hence

this example serves to show the limitations of our main results: they can be used to translate

questions about query complexity into purely algebraic problems which may or may not be easily

solvable. The character theoretic technique shown above could also be used to reduce the query

complexity of multivariable polynomial interpolation to a counting problem, as was achieved by

Chen, Childs and Hung [CCH18] without referring to characters. So far though, the character

based language has not led to any progress on this problem.
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7.2 Group summation problem
Fix an abelian group G. The k-element group summation problem is the task of computing the

sum f(1) + · · ·+ f(k) given access to an evaluation oracle hiding a function f : {1, 2, . . . k} → G.

This is an instance of coset identification. The oracles form a representation of the group of

functions Fun([k], G) = {f : {1, . . . , k} → G}, which we identify with Gk. In the quantum version

they act on the Hilbert space V = Ck ⊗ CG via

Uf |i, b〉 = |i, b+ f(i)〉.

We wish to determine Σ(f) :=
∑k
i=1 f(i), which is the same as determining the coset of f w.r.t.

the subgroup

H = {f : Σ(f) = 0} ≤ Fun([k], G).

The irreducible characters of Fun([k], G) are all of the form χ1 × · · · × χk : Gk → C, where each

χi ∈ Irr(G). The Hamming weight of such a character, denoted wt(χ1 × · · · × χk), is the number

of components which are nontrivial. The characters appearing in the evaluation representation

on V = Ck ⊗ CG are exactly those with Hamming weight ≤ 1. This implies that the characters

appearing in V ⊗t are those with Hamming weight ≤ t.
Next we consider the irreps of the subgroup H. We may H with Gk−1 via

(a1, . . . , ak−1,−(a1 + · · ·+ ak−1))↔ (a1, . . . , ak−1).

Hence irreps of H may be written as τ1 × · · · × τk−1 where again the τi are irreps of G. Using the

above equation one verifies that two irreps χ1×· · ·×χk and η1×· · ·×ηk have the same restriction

to H if and only if there exists ψ ∈ Irr(G) such that

χ1 × · · · × χk = ψη1 × · · · × ψηk.

By Zhandry’s theorem (Thm. 7.1) the optimal success probability for a t-query algorithm is

obtained by finding the largest collection of characters in V ⊗t which restrict to the same irrep of

H. We can describe an element of such a maximal equivalence class: the character χ1 × · · · × χk
should have at least k− t trivial components (to guarantee its Hamming weight is ≤ t), then k− t
components equal to some nontrivial character ψ1 (so then χ1ψ

−1
1 ×· · ·×χkψ−1 also has Hamming

weight ≤ t), another k − t components equal to ψ2, and so on. For instance, we may pick

χ = 1× 1× · · · × ψ1 × ψ1 × · · · × ψN × ψN . . .

where the characters 1, ψ1, . . . , ψN are distinct (but otherwise arbitrary), and each one appears at

least k− t many times. Then the equivalence class of χ has size N + 1, consisting of the characters

[χ] = {χ,
ψ−1

1 × ψ−1
1 · · · × 1× 1× · · · × ψ

−1
1 ψN × ψ−1

1 ψN × . . . ,
...

ψ−1
N × ψ

−1
N × · · · × ψ

−1
N ψ1 × ψ−1

N ψ1 × · · · × 1× 1× . . . }

The size N + 1 of this equivalence class is either |G| (if we can fit every irrep of G, which

happens iff b k
k−tc ≥ |G|) or b k

k−tc. Hence for a t-query algorithm

Popt = 1
|G|

min
(⌊

k

k − t

⌋
, |G|

)
.

This is exactly Thm. 5.1 by Zhandry ([Zha15]). An efficient algorithm achieving this success

probability had previously been described (for G cyclic) by Meyer and Pommersheim [MP14].
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7.3 The van Dam algorithm
The van Dam learning problem [van98] is concerned with identifying a (total) Boolean function

f : {1, . . . , n} → Z2 given access to evaluation queries. This is a special case of symmetric oracle

discrimination (see Section 4). The group of oracles is isomorphic to Zn2 and irreps can be again

written as a product χ1× · · ·×χn of characters of Z2. The characters appearing in the t-th tensor

power of the evaluation oracle representation are exactly those with Hamming weight ≤ t. Hence

the optimal success probability of a t-query algorithm is

Popt = 1
2n |{characters of Zn2 with wt ≤ t }| = 1

2n
t∑
i=0

(
n

i

)
which reproves the optimality of van Dam’s algorithm.
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