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Abstract

This thesis provides preliminaries to the field of quantum concept learning, including
the formalism of quantum computing and general quantum measurement schemes.
Once this is developed, we examine problems in quantum concept learning, particu-
larly focused on Hamming distance oracles.






Introduction

The theory of quantum mechanics was developed to its current state over the last
century. In 1982, Richard Feynman, noting the computational difficulty in simulating
quantum systems, hypothesized that quantum experiments could be used as compu-
tational devices, given tools to produce and measure quantum states. In 1992, David
Deutsch and Richard Jozsa proved the theoretical existence of quantum computers by
providing the first quantum algorithm. Since then, various quantum algorithms have
been discovered that offer speed-up over known classical algorithms, such as Shor’s
quantum factoring algorithm.

The algorithms we consider are those that try to identify a bit string a € Z% from
a “black-box”, or oracle, that encodes the string somehow. The algorithm is allowed
to query the oracle by passing information through it and recording the result. The
efficiency of such algorithms is measured by how many queries are required to identify
a, or the likelihood of determining a with a small number of queries. It turns out
that there is enormous speed-up in many such problems when they are converted
from classical to quantum algorithms.

A classical bit is simply a binary distinction; an element of {0,1}. Under the
framework of quantum mechanics, we extend this notion to include any ”superposi-
tion” of 0 or 1. A qubit (quantum bit), typically expressed in Dirac notation may be
written as |U) = «|0) + 5 |1). Physicists call this a quantum state; we will addition-
ally refer to it as a qubit. Here o, 8 € C such that |a|? + |8|*> = 1. However, unlike a
classical bit, as observers we are unable to extract the complete information contained
in the state; namely the coefficients a and (. Instead, qubits must be “measured” in
some manner. One simple example is measurement in the computational basis. In
accordance to quantum mechanics, the real values |a|? and |3|? respectively represent
the probability of measuring the states |0) or |1), the possible results of measuring in
the computational basis. However, measurement generally changes the state.

How does this notion of a bit fit into a computational framework if we cannot
perfectly identify the qubits? The key is that although we are unable to access all the
information “contained” in a state, quantum systems are capable of handling large
amounts of information in novel and surprising ways so that an observer may deduce
specific properties of the system with the small amount of information allotted to her.

At the particle level, matter is observed not to follow classical laws but operate
according to solutions of the Schrodinger equation:

0 .
h—W = HU
ot



2 Introduction

This produces a wave-function W, which encodes a probability density function for
legitimate observable quantities, such as position or momentum. The space of all
wave functions is the space of L2-integrable functions, which is a Hilbert space. For
our purposes, we suppose quantum states to be elements of some finite-dimensional
Hilbert space H, dubbed the state space. Specifically, for quantum algorithms, we
require an isomorphism H, = C?" for some integer n. Hence, from now on, we forget
that states correspond to wave-functions and treat them simply as vectors in a suit-
able complex inner product space. For a discussion of the physical theory regarding
the Schrédinger equation, the reader is referred to [Gri04].

Chapter 1 provides an introduction to the linear algebra description of quantum
mechanics, quantum computing, and classical concept learning. Chapter 2 addresses
conditions for optimal measurements. Chapter 3 examines various quantum concept
learning algorithms. Chapter 4 examines Hamming distance concept learning and
provides new numerical results for some problems.



Chapter 1

Postulates of Quantum Computing

We now describe the details of the linear algebra formalism of quantum mechan-
ics. This thesis does not address the century-long experimental motivation for this
framework, or the many steps the theory has undergone to reach the linear algebra
framework (for example the relationship between vectors in state space and the wave
function described by the Schrédinger equation). Instead, it describes mathemati-
cally the setting in which idealized quantum information processing takes place. A
complete introduction to quantum computing is found in [NCO0O].

1.1 The State Space

We begin by describing the space of possible states that may describe a physical
system.

Postulate: The state space H, of any closed physical system is a complex Hilbert
space. The state of the system is described by a unit vector of H, (at any time t),
|U,). (Two unit vectors |¥),|W¥’) cannot be distinguished if |¥) = e |[¥’) 1)

The state space H is therefore equipped with a complex inner product.

Definition. A complex inner product ( | ) : H, — C satisfies the following con-
ditions:

1. {(a|Ab) = A{alb) for A € C
2. {a|b) = (b|a)”
3. (ala) > 0 with equality if and only if a = 0.

Throughout this thesis we assume that H, is finite-dimensional (unworried by
whatever physical implications that carries), and isomorphic to C¥ with the familiar

LA factor of €% is called a global phase factor. The indistinguishability of two states differing by
a global phase factor is due to the fact that any quantum measurement applied to the states admits
the same statistical result. This phenomenon will be illuminated in Chapter 2.
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dot product for an inner product. The inner-product supplies a norm || V|| = /(¥| V).
A unit vector is an element of H, with unit norm.

1.2 Dirac Notation

An extremely useful notation when describing quantum states is Dirac notation. Ac-
cording to this, a column vector W is called a ket and written |¥). The conjugate
transpose of |¥) is called a bra and written |U)' = (¥|. This notation is clearly
useful when working in finite-dimensional state spaces, because the vector product
(@]) [¥) = >, P;¥; = (P|V) thus corresponds to the dot product, hence inner prod-
uct of the state space. The notation may be used further to define an operator formed
by the outer product of two vectors, i.e. |®) (V|. As this is the product of a row vector
by a column vector, we expect the formula to describe a linear transformation on the
state space. Indeed,

Definition. The outer product of two vectors, written |®) (¥| is the operator which
acts by (|®) (V) |z) = (V]z) [®).

Clearly any such operator is rank-1, because the subspace of H, that is orthogonal
to a vector |¥) has dimension dim(#Hs) — 1. An important property of the outer
product is its relation to the inner product:

Proposition. Let |®), |V) € H,. Then
Tr(|9) () = (V]®)

where Tr( ) denotes the trace of an operator .

Proof. Suppose {|i)} is an orthonormal basis of H,. Then:

Tr(|®) (¥]) = Z (i (1) (W) 4) = Z (i|®) (i V)" = (V|2)

]

Example. If |U) is a state vector, the operator P = |W¥) (¥| describes a rank-1
projection operator onto the vector |¥). Indeed,

P*(Jz)) = (1) (¥]) [¥) (¥ (|z))
= (Ulz) (W) (U[) [W) = (¥|2) [¥) = P(|z))

*Typically, the trace is defined as a matrix function, i.e. ¢tr(4) = 3, A;;. However, it is noted
(from matrix multiplication) that tr(AB) = tr(BA). Then for any change of basis matrix M, we have
tr(MAM~') = tr(M~*MA) = tr(A). Therefore tr(A) is invariant under any matrix representation
of the operator associated with A; hence the trace of an operator is well-defined.
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1.3 Qubits

The building blocks of quantum information, and the quantum analogues of classic
bits are qubits. Although a valid state space may have arbitrary finite dimension, we
associate only states of a 2 dimensional state space with the notion of a qubit in order
to more readily allow comparison between classical and quantum algorithms.

Definition. A qubit is a quantum state (unit vector) in a 2-dimensional state space
Hs.

Equivalently, given an isomorphism H, = C?, a qubit is a unit vector in C2.

Definition. When H, = C?, the computational basis is the orthonormal basis

{10y, 10} ={(5), (D)}

An important quantum phenomenon is superposition. Quantum superposition
illuminates an essential difference between classical bits and qubits: a classical bit is
equal to 0 or 1 while a qubit is any (unit) linear combination of the computational
basis states {|0) , |1)}. Hence a general vector |¥) = « |0)+|1) is a qubit iff |o|*+]|3]?
= 1.

Definition. When #H, = C? we define the states {|+),|—)} by

+) = ﬁum 1)

1
=) = W(!@ - 1)

|+) is called the equal superposition state.

1.4 Dynamics of a Quantum System

Quantum states may undergo only linear transformations. Particularly, only unitary
transformations are allowed.

Postulate: The time evolution of a closed system is described by unitary oper-
ators. That is, in a state space H,, V t; <ty if the state of the system at time t; is
|W;,) and the state of the system at time ¢y is |Wy,), there exists a unitary operator
Uity : Hs — Hs such that |Vy,) = Uy, 1,|Vy,). Any unitary operator describes a valid
evolution of a quantum system.

Hence the set of unitary operators form the “toolbox” for changing quantum states.
Intuitively, this makes sense because unitary operators preserves the inner product
and hence the norm. The set of linear transformations H, — H, is a vector space
with dimension dim(H,)? (again, supposing dim(H,) = n is finite; then each linear
transformation is associated with an n x n matrix). The second part of the postulate
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states that any unitary transformation is available to us in the construction of quan-
tum algorithms. In our computational model, unitary transformations correspond
to classical logic gates; they provide the valid ways of manipulating the information
stored in qubits. This comparison also highlights the necessary difference between
classical and quantum computation. Unitary operators are necessarily reversible (be-

cause U1 = U"), while many classical logic gates are irreverisble, such as OR or
NAND.

Example. The following matrices correspond to unitary operators expressed in the

computational basis:
01
(1 o)

(i)

We now see, according to our previous definition,
+) = H|0)
|—) = HI1)

Examining the action of X we see that
X0) = [1)
X [1) = 10)

For this reason, X is sometimes referred to as the quantom NOT gate.

1.5 Composite Systems

We are often interested in quantum systems that are composed of multiple distinct
component systems. A third postulate states that composite systems are formed from
the tensor product of component systems. Rather than define the tensor product, we
assume the following proposition is true:

Proposition. Suppose V and W are n and m dimensional complex Hilbert spaces,
respectively. Then the tensor product of V and W, written V ® W, is an nm
dimensional complex Hilbert space satisfying the properties:

1. Forall A\ e C and |v) € V, |w) € W:
A|v) ® [w)) = (A ])) © [w) = [v) @ (A |w))
2. For all |v), |vg) € V and |wy) , |we) € W
(lo1) 4 [v2)) @ [wr) = Jo1) @ |wy) + |v2) © [wy)

[v1) @ (Jwi) + |w2)) = [v1) @ [wa) + [v1) @ |wa)
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3. If (| )y and (| )y, are the inner products of V' and W, then the inner product
on V ® W is defined as

(Jv1) @ wi) | |ve) @ |wa)) = (vi]va)y (wilwa)y,

The tensor product is also useful for describing linear operators on the space
Ve W:

Definition. Suppose V and W are n and m dimensional vector spaces and A and B
are linear operators on V and W, respectively. Then the operator AQ B: VW —
V @ W is defined by:

(A@ B)(|v) ® |w)) = Alv) ® Blw)

Some obvious basic properties of this definition include that if A and B are uni-
tary (invertible) operators, then A ® B is unitary (invertible).

The definition of the tensor product of linear operators leads to a matrix formu-
lation of this definition.

Definition. Suppose A, B are n x n and m X m matrices, respectively. Then the
matrix A ® B is the nm x nm matrix (expressed in block form)

AllB AlgB .. AlnB

AnB AypB ... AyB
Aep= | T T

AnB ApB ... A,B

Calculations on a basis state (not included) show that the two definitions for the
tensor product coincide.

We are ready to state the third postulate:

Postulate The state space of a composite system is the tensor product of the
component systems. That is, if Hy,...Hy are the state spaces of component systems,
then the full system H, = ®f:1 H;. If each component is in the state |¥;) then the
full system is in the state ®f:1 |W;).

Remark For ease of notation, we write |v) ®|w) = |vw). Also, for either operators
or vectors we write A®" = Q)| A.

It is clear to see that if {|v;)} is a basis of V and {|v;)} is a basis of W, then
{|v; ® w;)} form a basis of V @ W. Notice that C*" is trivially isomorphic to (C?)®".
With this in mind, we extend the definition of the computational basis to larger
spaces:
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Definition. When dim(H,) = 2", that is, H, = C?" the computational basis of
H, is the orthonormal basis

{10...0),]0...1) ... |1... 1)} ={]i) |i € Z5}

Example. Suppose H, = C*. Then, from the previous example, we may examine
the result of subjecting the computational basis states to H®?:

H#2|00) = |++4) = <% 0) + |1>> ® (% 0) + y1>)
= 2(00) + [o1) +]10) + 1)

H#2|01) = [+-) = %(IOO} — [01) + [10) — [11))
H[10) = |—+) = %(!00} +01) = [10) + [11))

HE 1) = | ) = (00} — [o1) 10 + [11)

Notice that H®? once again produces an equal sum of the basis states of C2.
Therefore we also extend the definition of an equal superposition state:

Definition. If H, = C?", the equal superposition state is defined:

1 .
1) = Jan Z |2)

i€Zp

Clearly |n,) = |+)%" = H®"|0...0).

1.5.1 The Discrete Fourier Transform

The discrete Fourier transform is an often used tool in quantum algorithms.

Definition. The discrete Fourier transform is a linear operator F : C¥ — CV defined
on an orthonormal basis {|0),...|N — 1)} by:

=

-1

]_—N |]> — e—27rijk/N |k‘>

5
Il

0

with inverse

=z

-1

(FY) k) =

eZm‘jk/N |]>

2l
g

.
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1.6 Hadamard Matrices

(1 1
v2\1 -1
Hadamard matriz. It has many useful properties and occurs frequently in quantum
algorithms.

Xn
The matrix H®" = ( )) is extremely useful and is referred to as a

Proposition 1.1.

H" = —= % (=1 ]a) (yl

x,yeLy

Sl

where T -y =Y " | ;Y.

Abusing terminology, we call the operation x - y the dot product of n-bit strings x
and y (this is not the same as (x|y) = d,, for computational basis states). It is the
number of shared 1’s between x and y. The proposition implies H/" = (—1)*/ where
1,J are indexed by the computational basis states, i.e. elements of Z7.

Proof. We prove by induction. Recall that

—

which satisfies the claim. We note that H can be written:

1
H = E((\()) + 1)) (0] + (10) = 1)) (1))

and for the induction hypothesis we assume

Y. (D7) (]

:z;yEZg*l

H®n—1 —
1/2n—1

Now examine how H®" = H®"~! @ H acts on an arbitrary computational basis
element |e) = |w) ® |a) where w € Z) ' and a € Zy:

1
A /2n71

Yo YT (y e % ((10) + 1)) (O] + (10) = 1)) (1) | (|w) ® |a))

x,yEZg_l

:jQ—n Y (=07 ey | @ ((10) + (1)) (0la) + (|0) — [1)) (1]a))

n—1
TEL),

Now suppose |a) = |0). Then we have:

H="(Jw) ® |0)) =
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since z - e = z - w for all z € Z3. Next consider |a) = [1). Then:

= 3 (1 (a) o)

ez

H®"(Jw) ® 1)) =

-

2€Ly

because z - e = x - w if the last bit of z is 0, while z - e = x - w + 1 if the last bit of z
is 1 (i.e. |z) = |z1)). We have completed the proof, as we have shown that

H®" e) Z )" L) Gyl | le)
T,y€Ly
for all computational basis elements |e) of C2". O

It is clear that H®" is symmetric. Since it is unitary, we have:

Corollary.
Heén — (H®n)T _ (H®n)71

1.7 The Density Operator

We now discuss the density operator formalism, which is a way of describing a quan-
tum system whose state is not known, that is, when a system that could be in one of
a number of different states with certain probabilities. This formalism is not used in
the discussion of quantum algorithms and is used solely in the description of general
quantum measurement schemes discussed in Chapter 2.

Definition. Suppose a quantum system with (finite dimensional) state space Hs is
in one of n possible states {|V;)} with respective probabilities {p;}. Then the system
is an ensemble of pure states. The density operator associated with an ensemble is a
linear operator p : Hy — Hs:

pP= Zpi W) (W
=1

Density operators are characterized by a useful theorem:

Theorem 1.2. A linear operator p acting on an N dimensional complex Hilbert space
Hs is a density operator if and only if:

1. Tr(p) =1
2. p>0

where the notation p > 0 asserts that p is a positive operator.
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Proof. = Suppose p = S~ p; |¥;) for |¥,;) € H,. Let {5} be an orthonormal basis
in Hs. Then

N
Tr(p) = ZPiTT(<‘1’i| [¥3))
1;1
= Zpi (U] 0;) =1
i=1
Now take an arbitrary |®) € H,. Then
N
(®[p|®) = Zpi (D[W;) (P|W;)
i=1

N
= pill (@) P > 1
=1

<= Suppose p is a linear operator on H, satisfying the two conditions. Since it is
positive, it has a spectral decomposition [ref]:

N
P = Z A W) (W]
i=1

where each \; > 0. The trace condition requires Zfil Ai = 1. Therefore the ensemble
of pure states {|W;)} with probabilities {p;} produce the density operator p. ]

Let us examine the rules that the postulates discussed enforce on density opera-
tors. The previous theorem accounted for the first postulate, as density operators are
formed only from unit vectors of a complex Hilbert space.

Proposition 1.3. Suppose a closed quantum system is an ensemble of pure states in
a n N dimensional state space Hg with py, = Zé\ilp,- |W,;) (V;|. Then for all ty > ty,
if the system is an ensemble of pure states with density operator p,, then there exists
some unitary operator Uy, 4, : Hs — Hs such that

pt? = Ut17t2pt1 UtTl,tQ

Proof. From the second postulate, if a quantum system is in state |¥y,) at time t;,
then for all to > ¢y, if the system is in state |Uy,) at time to, [Wy,) = Up g, [V4y).
Therefore, each pure state in an ensemble must evolve according to the same unitary
operator. Hence, for all t5 > t,

N

Pty = Z ’\I]t2> <\Ijt2’

=1

N
- Z Ut17t2 |\Ijt1> <\Ilt1| UtTl,tg
i=1

N
= Ut1,t2 <Z ’\Ijt1> <\Ijt1|> UtTl,tz = Utl,t2pt1 UtTl,tg
i=1
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]

1.8 The Measurement Postulate

The process of extracting information from a quantum state requires further assump-
tions. Measurement is determined by a set of linear operators, {M,,}, acting on a
finite dimensional state space H,. The index m refers to the possible measurement
outcomes, which we generally take to be finite. The results of measurement are
provided by the Measurement Postulate:

Postulate: Given a finite set of linear operators {M,,} acting on a finite dimen-
sional state space H, such that ) M, = I and a quantum system in the state |U),
the probability of measuring outcome m is

P(m) = ([M],M,,|9) (1.1)
and the post-measurement state of the system is

M |9)

I3 19)| (12

We remark that the condition M, = I (called the completeness relation)
is required so that measurements are consistent with the notions of probability.
Clearly 1 = Zivn:l P(m). Therefore, from the Measurement Postulate,

= ﬁ: ([N, M | )

m=1

= (V] Y M} M,;|P)

m=1

due to the sesquilinearity of the inner product. Therefore

N
(> M} M,,) [¥) = [¥)
m=1
N
— > MM, =1 (1.3)
m=1

A frequently used measurement scheme is a von Neumann measurement, in which
case each the set of measurement operators forms an orthogonal set of projection
operators (recall that the space of linear operators acting on H; is itself a Hilbert
space, equipped with the trace inner product).
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Definition. A measurement {M,,} is a von Neumann measurement if the mea-
surement operators form a set of mutually orthogonal projection operators, i.e.

M2 = M, VM,
Tr(M;M;) =0 L7

A measurement {M,, } is a complete von Neumann measurement if measurement
operators form a set of mutually orthogonal rank-1 projection operators; i.e. M, =

|tm) (ftm| for some |p,,) € Hy and (p;|p;) = 0 for i # j.

The orthogonality condition (u;|p;) = 0 for i # j is a direct consequence of
the Hilbert-Schmidt orthogonality of the projection operators, assuming they are 1-
dimensional.

Remark. Note that this definition, along with the completeness relation, requires
each |p;) to be normalized.

|’ui> - (Z Em> |'u2> = (Z |:um> <Mm|) |Mz>
= (wilp) i) = (ilps) =1

The following complete von Neumann measurement is the most common measurement
employed in quantum algorithms.

Definition. In a state space of dimension 2" supplied with the orthonormal basis
{17) 7 € Z3}, we define measurement in the computational basis to be a quan-
tum measurement using the operators

Mz =15} (il (1.4)

Example. Let us examine the result of measurement in the computational basis on
the general single-qubit state |¥) = «|0) + £ |1). From the above definition, this
measurement consists of two operators

M) = |0) (0]
My = [1) (1]
Therefore, by the Measurement Postulate, the probability of receiving outcome |0) is
P(|0)) = (| M Mjo)| V)
= (¥0) (0]0) (O %)
= oo = |af

By the Measurement Postulate we can also compute the post-measurement state
if the output is |0):

Mg l0) _ 00
13 [0} 11— TT10) (0[0) ]

Similarly, P(|1)) = |B|” and the post-measurement state after measuring |1) is |1).
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For many applications, including those in this thesis, only the measurement out-
come is significant and so the post-measurement state is irrelevant. This means the
The Measurement Postulate may be simplified by defining, for any measurement,
positive semi-definite linear operators FE,, = M/ M,,. These operators are positive
semi-definite and Hermitian by definition (and are usually referred to as Positive
Operator-Valued Measures, or POVMs).

Definition. A POVM, or Positive Operator-Valued Measure, is a finite set { Fy, ... Ey}
of positive semi-definite operators acting on a finite dimensional state space H, such
that > E,, =1.

The probability of measuring outcome m may now be written:
P(m) = (V|E,|¥) (1.5)

Hence, from now on, a quantum measurement is specified by a set of positive
semidefinite linear operators {E,,}.

Theorem 1.4. Suppose |Vy),|Vy) are quantum states in an n dimensional state
space Hs. Then there exists a measurement to distinguish V1) ,|Ws) with certainty
iff [¥1), |¥s) are orthonormal.

Proof. First assume |W;) ,|Wy) are orthonormal. Then the measurement

{0 (W], (o) (Waof , T — (1) (W] + [Wq) (Vo) }

is a valid measurement that will measure outcome 1 iff the state to be measured is
|W;) and outcome 2 iff the state to be measured is |Us).

We prove the converse by contradiction. Assume |Wy) , [W5) is not orthogonal, but
there is some measurement {E, Es, ... E} that distinguishes them with certainty.
Then for some outcomes j € {1...k} we deduce the state is |¥;) and for some
outcomes i € {l...k} we deduce the state is |Uy). Therefore we introduce the

operators
E'=)E,
J

E* =) E

where the indices i, j are defined as above. Clearly E', E? > 0, and by the hypothesis,
we must guess that the state is either |U;) or |Ws); therefore E' + E? = I. Therefore
{E"', E?} supplies a valid measurement. We know therefore that

1= (U, |E'W,) = (Uy|E2Wy) = (04| (E + E?)U,)

From which we deduce (¥;|E?¥;) = 0. Since every positive semi-definite operator
admits a unique positive semi-definite square root, v E? is well-defined and we have
shown that v E? |¥;) = 0. Now write

[Wa) = a|¥1) + 3 9)
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where |¢) is orthonormal to |¥;). We assume that |U;),|Wsy) are not orthogonal, so
|8]* < 1. Therefore vV E?|¥y) = SV E?|¢).. However:

1= <‘I’2’E2‘I’2> = (ﬁ‘yﬂ\/ﬁ‘pﬁ = |5‘2 <\/ﬁ¢|\/ﬁ¢> = ‘5|2 <1

A contradiction. Therefore there is no such measurement that distinguishes non-
orthogonal [Uy) , [Ws). O

Although not included here, this result easily generalizes to the corollary:

Corollary. Suppose | V1) ,...|¥,) are quantum states in an n dimensional state space
Hs. Then there is a measurement {Ey, ... E,} which distinguishes those states with
certainty iff {|¥1)...|V,)} form an orthonormal set. If that is the case, then the
measurement {Ey, ... E,} = {|V1) (U4],...|V,) (¥,|} is a complete von Neumann
measurement.

The Measurement Postulate is generalized further to describe its action on general
quantum ensembles, specified by a density operator, in the following Proposition.

Proposition 1.5. Given a quantum system described by a density operator p and
a set of measurement operators {E,}, the probability of measuring outcome m is
P(m)=Tr(Ep).

Proof. Let p= 3% p:i |¥,) (¥,]. Hence the quantum system exists in state |¥;) with
probability p;. Now consider applying the measurement operators to this system.
By the Measurement Postulate, the conditional probability p(ml|i) = (U;|E,,|¥;).
Therefore:

P(m) = Zpip(m\i)

k
i=0

= ZpiTr(Em ;) (W) (1.6)
= TT(Z Enpi |‘I’z> <\II’L|) (1-7)
=Tr(Emnp) (1.8)

where (3.8) and (3.9) follow from the linearity of the trace and { £, } operators. [J






Chapter 2

Optimal Quantum Measurements

2.1 Necessary and Sufficient Condition for Opti-
mal Measurement of Multiple States

We are now equipped to consider the problem of determining how effective a set of
measurement operators are in distinguishing between a set of known quantum sys-
tems. This problem seems to have been originally solved by Kennedy and Yuen
[YKL75], but Eldar and Forney [EMV08] have since condensed the literature to pro-
vide a direct proof of the main theorem describing necessary and sufficient conditions
for optimal measurement of m general quantum ensembles.

To describe what is meant by ”distinguishing” between a set of known quantum
systems, we consider a communicational analogy to the problem. Suppose Alice and
Bob share knowledge of a fixed set of quantum systems {p;}. Then Alice “picks”
a state by applying a set of prior probabilities {p;} (i.e. she sends the system p;
with probability p;). Bob is equipped with a set of measurement operators { £, } and
hopes to determine which system Alice transmitted such that measuring outcome m
corresponds to deciding that Alice transmitted {p,,}. An optimal measurement is
a set of positive linear operators {F,,} that maximize the probability of Bob cor-
rectly guessing Alice’s transmission. If P(i]i) is the probability of choosing outcome
1 assuming the system is described by p;, then the optimal measurement optimizes:

N
mapriP(iﬁ)
i=1

The theorem relies on the partial ordering of operators supplied by the notion of
positive semi-definiteness: for linear operators A\, Ay acting on H,

M2 = M= >0
that is, \; — Ao is positive semi-definite. The necessary and sufficient conditions

for an optimal measurement {Em} are provided by the following theorem, compiled
from [EMVO08], [YKLT75], and [Hel76].
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Theorem 2.3. Let {p;} be a fized set of N quantum ensembles in a an N dimensional
state space Hs equipped with a set of prior probabilities {p;|p; > 0, Zf\;l pi =1}. Then
a measurement {Ep,} is optimal iff:

(A= p)E; = E;(A—p}) =0, i=1,2,..N 2.1
A—pl >0, i=1,2..N (2.2)
where
pi = Pipi (2.3)
N N
A=) Biry =Y AE) (2:4)
7j=1 7=1

The theorem makes use of the following lemmas, the proofs of which are found in
Appendix 1.

Lemma 1. Suppose E1, Ey are positive semidefinite linear operators. Then:

T’I"(ElEg) Z 0
TT(ElEQ) =0 << F\Ey=FEFE =0

Proof. See [YKLT75]. O

Lemma 2. Let K denote the space of linear operators over Hs. Then the space KN
1s a Hilbert space equipped with the inner product

N

1@ @UyVi®-@V,) =]][1TrUV)

=1

Then the set of possible measurements, M = {{E,}N_,|En > 0, Zizl E, =1} 1s
compact subset of K®™.

Proof. See [CDSO08]. O

Lemma 3. (Separating Hyperplane Theorem) Any two disjoint convex sets can be
separated by a hyperplane. That is, if V' is a real inner product space with C; D C 'V

(x,c) >a Veel

disjoint convex sets, then dr € V,da € R :
(x,d) <a VdeD

Proof of Theorem 2.3. We wish to maximize the probability of correctly determining
the quantum system. This translates to the optimization problem:

N
maXZpiP(iﬁ)
i=1



2.1. Necessary and Sufficient Condition for Optimal Measurement of Multiple
States 19

where P(i]¢) is the probability of measuring outcome i assuming the system is in state
pi- Therefore, by Prop. 3.1, our optimization problem is:

N
max Y piTr(Eip)
Zﬁ:l_Em:I =1
N
= max Tr(E:p;)
= 1

N i=
m=1 En=I

Let us denote M to be the set of all possible measurements with N operators, i.e.
M= {E N _|En >0, | E, =1} Also define M({E,,}) = >~ | Tr(Eip}) so

that our optimization problem may again be rewritten:

max M
{Em}eM

By Lemma 2, M is compact, and M is a continuous linear functional. There-
fore M attains a maximum over M, that is 3{E,} € M : M = M({E,}) >
The optimization problem is now a problem in the general field of convex pro-
gramming. A common method for determining necessary and sufficient conditions
for {E’m} is to formulate a dual problem. Denote by L the space of Hermitian opera-
tors on H,. The purpose of the dual problem is to produce a linear functional 7" such
that
min T(\) = M
AeL
This equality will allow us to find the necessary and sufficient conditions on {E,,}.
Following [ElFo 2008], T is constructed by producing a convex set and applying the
separating hyperplane theorem to this set and {0}; we will see that the parameters
of the hyperplane will be parameters for the dual problem.
The setting for the dual problem is the inner product space £ ® R equipped with
the inner product:

<(E1,7’1), (EQ,’I“Q)) = TT(E1E2> + T1T2

Note that as F4, F'5 are Hermitian operators:
Tr(E\Ey) = Tr(EyEy) = Tr((EyEy)') = (Tr(Fy Ey))*

Therefore the trace of the product of two Hermitian operators is real; thus £ ® R is
a real inner product space.

We now construct a convex set in the space £ ® R. The constraints on the
original (often referred to as the primal) problem are 22:1 E, = I and M >

M({E,.}) (V{E,} € M). First consider the set C; = {~I+ 3. _ E|E,, € L}. We
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contend this set is convex; consider a convex combination of X,Y € C;: for 0 <t <1,

N N
X+ (L—t)Y =—tI+t> Xp+(1-1)) Y,
m=1 m=1

=T+ (tXp+ (1-1)Y,) (2.5)

m=1

The summand in (2.5) is clearly positive semidefinite; therefore C; is convex. Now
consider Co = {¢ — M({E})| ¢ > M, E,, € L}. By similar reasoning, C, is convex.
Hence C; ® C; C L ® R is convex, and by definition (0,0) ¢ C; ® Cs.

By applying the separating hyperplanes theorem to the sets {(0,0)} and C; ® C,,
there exists a non-zero vector (Z,a) € L ® R such that

(Z,0), (=T + > B, c= 3 Tr(Bnpry)) 2 0

—Tr (Z <—I + Z Em>> +a (c — Z Tr(Emp;n)> >0 (2.6)

for all possible measurements {F,,} and any ¢ > M. (Note that, in applying the
separating hyperplanes theorem, since ((Z, a), (0,0)) = 0 we may take o = 0 without
loss of generality). We now examine critical points of the set C; ® C; using (2.6) to
determine constraints on the vector (Z,a).

First, consider E,, =0, m=1,2,... N and ¢ — M. Then (2.6) implies

aM > Tr(Z) (2.7)

Next, suppose ¢ = M + 1, E,, = 0 if m # 1, E; = t|2) (] for some |z) € RY. Note
that E) is positive semidefinite V¢ > 0. Now (2.6) implies
(T (2 |2) (2| — ag) ) {z]) > Tr(Z) — a(M + 1)
— 1T (2 — apl) 1) (2]) = Tr(Z) — (V1 +1)
— t(z|(Z —ap))x) > Tr(Z) —a(M +1)

As t — oo, this implies (z|(Z — ap})z) > 0 Vo € RY. Therefore
Z > ap; i=1,2,...N (2.8)

We now claim a # 0; indeed, setting @ = 0 and E,, = 0, (2.7) states Tr(Z) < 0, while
(2.8) means Z > 0 = Z = 0, contradicting the assumption that (Z,a) # (0,0).
Hence we may define A = Z /a.

Now (2.7), (2.8) describe the following conditions:

M > Tr())
A> gl i=1,2,...N
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Let T={XNeL: AX>p|i=12,...N}. Then VA € T'{E,,} € M, from the
completeness relation we see that:

Tr(\) = M{En}) =) En(A—p,,) >0

Hence we have Tr(\) = M; furthermore, we have proven that our original maximiza-
tion problem is equivalent to the dual problem:

N
max Tr(E;p;) = min Tr(\) m=12,...N (2.9)

m >0 1 AZP;n
ZN E =7 =

Now suppose {Em} and provide optimal solutions to (2.9). Then, using the

completeness relation,
Z Tr ( )\ pm)> =0

The operators E,, and A — P, are both positive semidefinite. Therefore we may apply
Lemma 1: the first statement of the lemma shows that each summand is equal to 0;
the second part of the lemma requires:

A ~ ~ A

Enh—p)=A=p)Ep=0 m=1,2,...N (2.10)

Summing (2.10) over all m and using the completeness relation gives us

I
1=
5

N
=Y OpEm (2.11)
m=1

m=

Now the condition A > P ¥m (note that this requires ) to be positive semidefinite,
hence Hermitian), (2.10), and (2.11) supply the desired conditions stated in the the-
orem.

To prove sufficiency, assume {Em} and \ satisfy the conditions of the theorem. It
suffices to show that they satisfy (2.9); that is

N
ST (Burhy) = Tr(Y)
m;l

= ZTT <Em(p;n—5\)> =0
m=1

Indeed, from (2.1), Tr (Em(j\ — p'm)> = 0. Therefore summing over m maintains a

vanishing trace; hence {E,,} is an optimal measurement.

[]
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We have seen the necessary and sufficient conditions for the optimal measurement.
However, this unfortunately provides little clues to determining the optimal measure-
ment; in fact, no analytic solution for the general problem is yet known. [EMVO0S]
and [Hel76] provide some computational methods for approximating the desired mea-
surement.

To find the optimal measurement for a given problem, it is necessary to consider
the form of the quantum states p;. For many applications, it is sufficient to examine
the condition when the quantum states to be distinguished are linearly independent
pure states, examined in the next section.

2.2 Optimum Testing of Linearly Independent Pure
States

A frequently recurring situation, and one important for later investigations, occurs
when the quantum systems to be determined are linearly independent pure states.
That is, each density operator is a rank-1 projection operator associated with a single
state, and these states are linearly independent in a finite dimensional state space
Hs. The main theorem concerning this situation is that a complete von Neumann
measurement provides the optimal measurement. This result follows directly from
the previous theorem, and is discussed in [Hel76], [Ken74], [EMV0S].

Theorem 2.4. Suppose {p; = |¢:) (¢:|} are a set of N fized pure quantum states in an
N dimensional state space H'. equipped with a set of prior probabilities {p;}. Then
there exists a unique complete von Neumann measurement that supplies the optimal
measurement.

Proof. We prove existence. Suppose that {E,,} satisfy the conditions for optimality
and, as above, A = S piF; i) (9]

We claim that H contains N linearly independent vectors {|F})} such that (¢;|F;) =
a;0;; for some set of positive real numbers {«;}. Consider the n — 1 dimensional sub-
space spanned by {|¢;) : i # j}. There exists non-zero [F}) orthogonal to this
subspace. Let ¢ = (¢;|F}). Then |F}) = c¢* |F}) is orthogonal to each [¢;) :i # j and
(6iIF) = e > 0.

We now calculate A |F}):

N
AEj) = (ZPiEi |4) <¢i!> |Fj) = pjaiEj o)
=1

For most applications, the {¢;} span H, i.e. dim(Hs) = N. However, when dim(H, > N but
still finite, we use N + 1 measurement operators with Exy1 = I — Py, where Py, is projection
onto H . However, the probability of achieving the “outcome” N 41 is 0, as each possible outcome
is in the null space of Enxyi. Now the completeness relation on the operators {F,,}N_, requires

ZTNn:1 E,, = Iy, . Examining the optimality conditions in Theorem 3.2.1 show that, due to the
impossibility of measuring outcome n + 1, we need consider only {E,,}~_; with A = Zﬁizl Enph,.
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The conditions of Theorem 2.3 require

Ej(pj ;) (d5] —A) =0 (2.12)
Therefore

0= E;(p;|9;) (@] — A) | F)
= E;jpj |¢;) (9| Fr) — prow B By [¢)
= prap BBy k) = 0jkpra B | dr)
LBy [¢r) = 051 By |or)

This last fact invites us to consider a new set of vectors that will serve as a basis:
define |puy) = Ek|¢r). Then E; |ug) = 0k |ux). We claim these vectors are linearly
independent: suppose they are not. Then 3|38) € Hy such that (|u;) = 0 for all i.
Then the condition A > p} requires:

(BIAIB) = pi (Bloi) (¢4 8)

N

(BI Em dm) (9mlB)) =D (dmlB) (Blum) > pil (¢:18) |”

m=1

Each summand on the left vanishes by assumption, but the quantity on the right is
strictly greater than 0 for some |¢;) since span ({|¢;)}) = Hs. Hence no such |5) may
exist, so the vectors {|u;)} are linearly independent.

Now, the operators are rank-1 projectors, for if |¥) = lefv:1 ay |px) then

ESE; |V) = Ej(a; | ) = aidij |ps) = 04 E; | V)

Therefore { E,,,} composes a set of projection operators of the form {E,,} = |tm) (tim]-
Finally, note that the completeness relation implies the orthonormality of the set

{lpa)}:

i) = (Z 145 <uj!> I

= 0= ((uilp) = 1) ) + > {gla) 1)
i

The {|u;)} are linearly independent, so (u;|p;) = ;.
Proof of uniqueness is found in [Ken74] O

We conclude this section with an equivalent optimality condition for pure states
that span the state space (actually a specification of a general condition derived from
Theorem 2.3 that is outside the scope of this thesis). It will be extremely useful in
formulating the optimal measurement problem as a matrix problem.
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Proposition 2.5. A complete von Neumann measurement {E,,} = {|pm) (tm|} is
optimal in distinguishing a set of N uniformly distributed pure quantum states {p;} =

{|0:) (¢sl} if and only if

(1sl05) (pnldi)™ = (sl dn) (el dr)” (2.13)
Z <Nm|¢m> ‘:um> <¢m| > |¢z> <¢z| Vi=1,2,...N (2'14>

for all j,k € {1,2,...N}.

Proof. We begin with the forward implication. Assume the orthonormal set {|iu,)}
specify an optimal measurement. Then the condition (A — p)Ex = 0 implies

1

AE), = NpkEk
Yoo 1
E; Z Emﬁpm Ey = EjﬁpkEk
m=1

Expanding the final equality gives (2.13). The condition A > p} is clearly equivalent
to (2.14)
To prove the converse, assume (2.15) is true. Then

Ei(p; — pr)Er =0

Summing over j yields (A — p})Er = 0. As noted, the condition (2.14) says A — pf. is
positive semidefinite. Finally, E;(\ — p)) = E;p, — E;p; = 0. O

2.2.1 Distinguishing Linearly Dependent Pure States

We present an upper bound on the success probability for distinguishing between a
finite number of linearly dependent pure states.

Theorem 2.6. Suppose {p; = |¢:;) (¢:|} are a set of N pure states in a finite di-
mensional state space Hy with a uniform distribution (the system is in state p; with
probability 1/N.. Suppose {|¢;)} span a k dimensional subspace W. Then any mea-
surement will correctly determine that a system is in a state |¢;) with probability

al k
Pill) < —
SnP(l) < 5
Proof. From [MP09]. Let Py denote projection onto W. Then Py — p; > 0 for all
pi- Let {E;} be an arbitrary measurement consisting of N measurement operators.
Then we may bound the success probability as follows:
1 1 1 k
— NTr(E;p;) < — NTr(E;Py) = =Tr(Py) ==
§ S NTrEp) < SNTHERy) = () =
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2.3 Matrix Formulation

For our later purposes, due to the binary nature of qubits, we consider the problem of
distinguishing states in a finite-dimensional state space with H, = C?". The previous
corollary states that the optimal measurement for distinguishing N = 2" linearly
independent pure states {1} is some complete von Neumann measurement, specifying
an orthonormal set {y;}. Suppose they are distributed uniformly, so p; = % Then
the probability of correctly determining the state is

ZP(@M = ZTT (|2) {paalbi) (i)

= > i) P (216)

Recall that unitary transformations are equivalent to orthonormal basis transforma-
tions. Therefore measurement by an arbitrary complete von Neumann measurement
is equivalent to subjecting the system to an arbitrary unitary transformation and
measuring in the computational basis. Let {|i)} denote the computational basis.
Consider the matrix A whose i column is |t/;) in the computational basis, that is

A= Z |thw) (k|

Let
N
U=> 15 el
=1

be the unitary matrix mapping an arbitrary orthonormal basis {|e;)} to the compu-
tational basis. Let B = UA. Then

Bij = (i|Bj) = (i|lUAj) = (ei]y)

Furthermore, the probability of successful measurement using the measurement vec-
tors {|e;)} is, from (2.16)

> 1) P = ld(B)?

where d(B) denotes projection onto diagonal matrices and || || denotes the L? norm.
Now Proposition 3.3.1 may be applied to describe conditions on B when the {|e;)}
describes an optimal measurement:

Corollary. For A, B, U as described above, {|e;)} describes an optimal measurement
of the states {|¢;)} if and only if

Bj;By; = Bji By,

N
> Bum lem) (Wl > 1) (] Vi=1,2,...N

m=1
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This is refined by noticing that the first condition describe the coefficients of the
matrices d(B)B' and Bd(B)' respectively. Furthermore, as noted in [GQLY], ||d(B)||?
is constant under left multiplication by diagonal unitary matrices, so we may assume
d(B) contains non-negative real entries.

Corollary. For A, B, U as described above, {|e;)} describes an optimal measurement
of the states {|p;)} if and only if

d(B)B' = Bd(B)

N
ZBmm|em> (Y| = i) (Wi Vi=1,2,...N
m=1

The first condition requires B to have constant diagonal (if there are enough terms
in the off-diagonal part of B). An extremely important result grew from considering
the Gram matrix of A:

Definition. The Gram matrix of an n x k matrix A is the k x k matrix G = A A.

We see from the definition that elements of the Gram matrix are the inner products
of columns of A, that is
Gij = (Ail4;)

where A; denotes the i*® column of A. We know from the polar decomposition [linAlg]
that there exists a unitary operator such that A = Uv/G. Therefore we consider the
v/G matrix as a measurement (i.e., in the above formulation, we take B = v/G. Tt
turns out that if v/G has constant diagonal, then it supplies the optimal measurement!

This result is discussed frequently in the literature; its proof is given in [HMP*03],
[SKIH97] and discussed in [EJO1], [EMVO0S].

Theorem 2.7. Suppose {p; = |¢:) (¢:|} is a set of N linearly independent pure states
in a finite dimensional state space Hy. Let A be the matriz whose i column is ¢;.
Then the square root of the Gram matriz of A, vV AtA, describes the optimal measure-
ment iff vV AT A has constant diagonal. Then the probability of successful measurement

is [Tr(vVATA)|?/N.
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Quantum Concept Learning

3.1 Quantum Algorithms

We are now equipped to discuss actual quantum algorithms. A quantum algorithm
involves initializing some quantum state, performing certain unitary operations on
it, and measuring the result. The result is a priori one of a fixed number of states;
therefore it is a problem in quantum state discrimination. For most algorithms,
measurement in the computational basis suffices.

3.2 Concept Learning

A natural setting for the discussion of quantum algorithms is concept learning. This
was introduced as a way of interpreting quantum algorithms by [HMP*03], but the
field has its roots in computational learning theory. For a discussion of classical
concept learning, see [Ang88].

Definition. A concept is a map ¢ : X — Zy. The set ¢71(1) is the extension of
concept c.

For example, let the set X be the set of length n binary strings, and a concept
¢q defined by ¢,(z) = 1 if and only if 2 = a for some n-bit string a. This particular
example describes the problem of unstructured search and will be addressed later.

A reason concept learning is an applicable framework for quantum algorithms is
that it relies fundamentally on the notion of an oracle, or “black box”. The task of
an algorithm, or learner is to determine a concept. It gains information about the
concept by querying an oracle, which encodes (or “hides”) the concept in some way.
Usually, the learner knows that the concept is a member of a set of many concepts.

Definition. A concept class is a set of concepts C = {¢;|¢; : X — Zs}. The task of
an algorithm is to identify a target concept c € C.

Sometimes a concept class is a partition of disjoint sets of concepts C; and teh goal
of the learning algorithm is to determine which partition a target concept is a member
of. Typically the members of a concept class are all similar, so that the learner knows
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beforehand what type of problem it is facing. For example, in the unstructured search
problem described above, the concept class would consist of C = {¢,|a € Z5}. Hence a
learner would know what form the target concept has. With each concept in a concept
class there is an associated oracle, and the quantum algorithm has access to the oracle
corresponding to the target concept. This is the foundation for the earlier claim that
a quantum algorithm must distinguish between a fixed set of known quantum states.
Each state corresponds to final state achieved from performing the algorithm using
each of the unique oracles (as described in the formulation of a general quantum
algorithm). Deducing the target concept is the same as deciding which of these states
is produced, and hence is a problem in quantum state discrimination.

There are many different types of oracles associated with any concept; the most
basic are described in [Ang88]. Useful for our purposes is the membership oracle,
which is equivalent to the concept map.

Definition 3.2.1. The membership oracle associated with a concept ¢ hides a
function f. : X — Zs is defined by f. =1 <= c¢(x) = 1. As before, the quantum
oracle Oy, that hides f, acts on the computational basis by Oy, |z,b) = |z,b & f.(z)).

Later we will implement oracles that hide more complicated functions f..

3.2.1 The Oracle

The algorithms we consider, and in fact most quantum algorithms, involve the idea of
an oracle or black box which holds a “hidden” function, f. The goal of an algorithm
is to deduce either the function or some property of that function. The algorithm
uses the oracle via queries: it provides an input x and the oracle responds with f(z).

Definition. The query complexity of an algorithm implementing an oracle is the
number of queries submitted to the oracle

To provide comparison with classical algorithms, we want this function just to act
on bits, so f : Z§ — Z,. Later we will generalize this slightly so that the range of f
may be a set larger than Z,, but for now this suffices. According to the postulates,
the oracle must act unitarily on quantum states. To account for this, an oracle is
implemented by inputting a quantum state tensored to a response register bit. The
oracle leaves the original state unchanged but writes output to the register bit( via a
unitary transformation). This is described formally below:

Definition. Suppose we have a quantum system with a 2" dimensional state space
H, = C?". Then the oracle that contains a function f : 7§ — Zso is the operator
O; : C?" ® C? is defined by its action on the computational basis for C*" @ C:

Os(li) @ [b)) = 1) ® [b® f(4))
where © € Z3, b € Zs, and & denotes addition mod 2.

The oracle is unitary because the oracle is defined by permutations of the compu-
tational basis.



3.2. Concept Learning 29

Even without knowing anything about the function f, there are interesting ways
to extract information from the oracle.

Proposition 3.1. Suppose we have a quantum system with a 2" dimensional state
space Hs = C?" and an oracle O; : C*"@C?* — C?"®C? hiding a function f : Z§ — Z,.
Let |i) be an element of the computational basis.

Os(liy ®1-)) = (=)' ®|-)

Proof.
Or(ly @]=)) =l @ (0@ f(i)) — 1@ f(2)))
Notice that, if f(i) = 0 then

i) ®

and if f(i) = 1 then

Therefore,

as desired. [

This method of extracting information from using an oracle once is called phase
kickback.

3.2.2 The General Quantum Algorithm

We have described all of the necessary parts to describe a general quantum algorithm.
We assume that each algorithm begins with an initialized state ¥y = |0...0). The
operations available to us are oracle queries and unitary operations. Finally, the
resulting state is measured. So if the algorithm has access to an oracle Oy, the
algorithm consists of interpreting the measurement of the state:

D) = UyOUs_y ... U104 Uy | W)

where the unitary operators {Uy} are fixed by the algorithm.

3.2.3 The Deutsch-Jozsa Algorithm

We're ready to put everything together to investigate a quantum algorithm completely
unique from any classical counterpart. The first is the Deutsch-Jozsa algorithm,
discovered by David Deutsch and Richard Jozsa [NC00]. It uses an oracle to deduce
whether f is constant (f(i) = f(j) Vi,j € Z%) or balanced (|f~1(0)] = |f~'(1)| =
-t
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Proposition 3.2. Suppose we are given an oracle O; : C*" ® C? that hides a function
f : Z*" — Z? that is known to be either constant or balanced. Then there exists a
quantum algorithm to determine whether f is constant or balanced using a single
query to the oracle.

First, note that classically, any algorithm with access to an oracle that computes
values of f (analogous to the action of the quantum oracle), requires at most 2"~ +1
queries. The proposition remarkably states that only 1 query is required using a
quantum algorithm!

Proof. We provide a quantum algorithm that determines whether f is constant or
balanced with one query to Oy.

Algorithm: Deutsch-Jozsa

1. Prepare the state

(U1) = (H*" @ H)(|0...0) ® 1)) = [n,) ® |-)

2. Apply the oracle Oy to |¥y):

(W2) = Op [W1) = Of(lm) @ =) =

3. Apply H®" ® I to |Wq):

N . ;L_ _1\zz2+f(z T _1_ _
[Ws) = (H" @ 1) [o) = | o= > D> (-1 ) ®\/§(!0> 1)

TELYy €LY

4. Measure the first n qubits of |¥3) in the computational basis.

The coefficient of |0...0) is

1
= —1)/®
e

2€7Ly

This quantity is 0 if f is balanced, and equal to 1 if f is constant. Hence the outcome
is [0...0) iff f is constant. Therefore, with one query to O we may determine whether
f is balanced or constant. O]

Remark. In the formulation of a general quantum algorithm, the Deutsch-Jozsa
algorithm is the result of measuring (in the computational basis) the the first n qubits
of the state

@) = (H®" © DO, (H®" © H) |0)*""!
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3.2.4 Single-Query Learning

Suppose we wish to tell how well a quantum algorithm can determine a target concept
using only a single query. Comparison to classical algorithms with this sort of problem
obviously is not measured by the query complexity of an algorithm, but rather the
probability of success given one query. Since the algorithm is frequently unable to
determine the the target concept with probability one with only a single query, this
problem is sometimes referred to as impatient learning.

An advantage of studying single-query learning is that the general algorithm is
much simpler. Any single-query algorithm now consists in measuring the state

@) = U,0,;Up |0....0)

We simplify this further by restricting our attention to algorithms which subject the
1 . . . . . .
state Jx Y icx [i)®|—) to the oracle. This seems like a good idea if we are searching

for a target concept in a sufficiently symmetric concept class (although we will later
generalize the algorithm to include different response registers). We therefore simplify
the general single-query algorithm to measuring the state

cz)‘
KRN PN

Definition 3.2.1. Let C be a concept class over a set X. Then the membership
learning matrix M is the | X| x |C| matrix with entries

(Me)s; = (=1)51
where ¢; € C.

The main results from Chapter 2 tell us that if we know that if these columns are
orthogonal, then there automatically exists a complete von Neumann measurement
that discriminates between these states with probability 1 (this measurement is the
set of projectors on those states). If the states are linearly independent and the
Gram matrix G = MCTMC has constant diagonal, then the square root Gram matrix
VG describes the optimal measurement. If the columns span a k < | X| dimensional
subspace, then any measurement is successful with probability at most % Generally,
the measurement query matrix provides a good way to study the single-query strategy
of passing the state |7,) ® |—) to the oracle.

The choice of response register is important. If |b) = |0), then the oracle writes
the value f.(z) to the register. If |b) = |+), then the oracle acts by the identity. If
|b) = |—), the oracle acts via a phase kickback on the input state:

Many algorithms use |—) as the response register. However it is not always the
optimal register.
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3.3 Grover’s Algorithm

Let’s consider now the problem of unstructured search mentioned before. The algo-
rithm provided below was first provided by Lov Grover [NC00]. For simplicity, we
suppose that we are searching for a single element of ZY. We are provided with the
concept class

GV = {ca : 7Y — 7y | ca() = 0r0}
Denote by O, the oracle associated with ¢, € GV which acts by
O, |z, b) = |2, P 61.4)

Clearly a classical algorithm requires 2V queries to deduce ¢, in the worst case.
However, a quantum algorithm requires only O(v/2V) queries to deduce ¢, with high
probability!!

Theorem 3.3.1. A quantum algorithm deduces a target concept c, € GN with success
probability O(1) with V2N oracle queries.

Proof. Suppose ¢,(z) = 6, is the target concept. Let |U) = Ziezé\f a; |i) be an arbi-

trary unit vector in C2". Notice the effect of submitting |¥) |—) to the membership
oracle O, :

O, [0, =) = [ Y (=D i) | @ =)
i€z
The effect on the first N qubits has a geometric interpretation of reflecting |¥) over
the hyperplane orthogonal to a in the space C2" | as it negates the coefficient of |a) in
|W) and leaves the rest unchanged. Intuitively, our goal is to manipulate the vector
|n,) using this operation and additional unitary operations so that it is close to |a).
Remember that measurement in the computational basis of a state |®) will result
in outcome a with probability || (®|a) ||, so the probability of correct measurement
increases as |®) approaches |a). To that end, we introduce the operator

R = I_2|77n> <7]n|

R is reflection over the hyperplane orthogonal to |,). To see this, let an arbitrary
state

(W) = [1n) + |7n) 1
where |7,,) is the component of |¥) orthogonal to |n,). Then

R|W) = [n,) + |77n>J_ —2|n) = —|nu) + |77n>J_

So R negates the component of |U) parallel to |n,) and leaves the rest unchanged.
Hence R is reflection over the hyperplane orthogonal to |n,) (and is clearly unitary).
Let ]
Il el
0" = cos™ ({n,|a)) = cos™( _2N)
T assume familiarity with the notation O(f), or big-O notation. Roughly, if f, g are functions
from ZT — R, then f is O(g) iff there exists k € Z* and ¢ > 0 such that f(n) < cg(n) for all n > k.
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denote the angle between |7,) and |a). Consider the real 2-dimensional subspace
spanned by |a) and |n,). Clearly the effect of RO, is rotation by 26’ in this subspace,
as the composition of two reflections is a rotation of twice the angle between the
vectors specifying the hyperplanes over which the reflections occur. Now let 6 = 5 —6'.
Then RO, affects a rotation of 2w — 26, or —26. Therefore —RQO,, is a rotation of 26.
We call the operator —RQO, the Grover iteration.

If we start with |7,), we see that one application of the Grover iteration rotates
|n,) an angle of 26 towards |a). This is because the |a) component of |7,,) is positive,
so the first rotation O, rotates |n,) away from |a), and ultimately negating RO,
causes a rotation towards |a). Figure 3.1 shows the real subspace spanned by |n,)
and |a) (the bold lines represent the hyperplanes orthogonal to |a) and |n,)) and
shows the effect of one Grover iteration.

|a)

O, |77 )

|”n>i

Figure 3.1: Effect of Grover iteration on |n,)

We now have the machinery to rotate |7,) towards |a) by 26 any number of times.
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We wish to apply the rotation k times, where k is the smallest integer that minimizes
T
|20 + 6 — §|

so k = [ — 1] (where [x] denotes closest integer to ). Then we may produce a

state |@) within & of [a). The probability of measuring a is:
2 20 g0
P(a) = [[{®la) [|” = cos(3) = 1 —sin’(3)

Remember that 0 = % — @' and hence

) =

sinf = sin(g — cos(

V2N /2N

Therefore, performing the Grover iteration on |7,) k times and measuring the resulting
state, we will measure a with probability

Pla)=1— Sin2(g) >1— sin2(g) —1_ QLN

which tends to 1 as IV increases. However, the algorithm must know beforehand how
many times to apply the Grover iteration. It cannot “try out” a measurement and
then continue with the algorithm because measurement alters the state of the system.

Therefore, we note that forV > 1, 6 ~ sinf = \/%TV We may then calculate

k=12 — 51~ 15veM)

Hence the algorithm requires O(v2") oracle queries to find a with high probability.
Let us summarize the algorithm:

Algorithm: Grover

1. Prepare the state
[W1) = |nv) ®[—=)

2. Apply the operator —RO,., (where R = I — 2|ny) (nn]) to |¥;) a total of
k= [5V2"N] times to produce:

|‘I/2> = (_Roa)k |‘I/1>

3. Measure |Us) in the computational basis to achieve outcome a with probability
P(a) >1— 55

[]
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3.3.1 Discussion of Grover’s Algorithm

It is worth briefly discussing robustness of Grover’s Algorithm. For small values of
N, it is not actually very accurate. For example, with N = 1, we have § = 7, which
means that the Grover iteration repeatedly rotates |n,) by 7; clearly, there can be no
improvement on a success probability P = %, so Grover’s algorithm does no better
than straight guessing!

It is an obvious question to determine how well a quantum algorithm will perform
with just one query to the membership oracle. To that end, we examine the quantum
learning matrix Mo with response register |—), whose i column is the first n bits
of

1 ,
Oa |7]n> & |_> - \/Q_n Z <_1)5a’2
=

i)

Hence
—1 forx=y

1 forx#y

(Mo)ﬂc,y = {

When N = 2, the columns of M are orthogonal, so there is a complete von Neumann
measurement that distinguishes these states with probability 1. Therefore, a quantum
algorithm may identify a target concept ¢, with a single oracle query.

Now considering Grover’s algorithm for N' = 2, we see that § = % and after 1
iterations, |n,) is within § — (% + ) = 0 of |a). Therefore a measurement will return
outcome a with probability 1. However, the instructions for the algorithm are to

iterate

which rotates |n,,) within § — (% +2%) = —% and will measure |a) with a probability

P(a) = cos*(§) = 1. This illustrates that Grover’s algorithm must be used carefully,
with large enough N, to ensure that the calculated value of k supplies the optimal

number of iterations.

3.4 The Bernstein-Vazirani Algorithm

We consider a famous example of a structured search problem. This problem and
its solution were first provided by Umesh Vazirani and Ethan Bernstein [BV93]. We
consider the concept class

BY" ={c,: Ly = 7Ly | co(x) =2 -a}

Remember that z - a is the binary dot product mod 2. Classically, the worst case
requires n oracle queries because each subsequent query eliminates at worst half of
the remaining concepts. The quantum version, however, does much better, learning
a target concept with just one oracle query in every case.

Theorem 3.1. A quantum algorithm can learn a target concept ¢, € BV" with a
single oracle query.
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Proof. Let O, denote the oracle associated with a concept ¢, € BV", acting on the
computational basis of C2"®C? by O, |z,b) = |z,b® x - a). Consider the membership
oracle matrix Mpgy. Its columns are

za’m

Y

T€EZY

We may therefore write

x/__ }E: xa‘x ’

T,0€EZY

which we recognize as H®". Therefore we have the following algorithm:

Algorithm: Bernstein-Vazirani

1. Prepare the state

[T1) = HZ"H0...01) = |n,) ® |—)

2. Query the membership oracle O,:

[W2) = O | V1) \/Q—nz ® =)

1E€ELY

3. Apply H®"*1:
[W3) = HO"[Uy) = [a) © 0

4. Measure W3 and receive outcome a0 with certainty and hence determine a.
The algorithm is summarized as:

la0) = H®" 'O, H®"10...0)
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Hamming Distance Oracles

We now consider oracles that operate as a function of the Hamming distance between
bit strings. The Hamming distance between two bit strings is the number of bits at
which they differ. This problem was studied first in [HMO02] and examined further in
[IMP09].

4.1 Hamming Distance
As in earlier sections, we think if elements of Z% as bit strings of length n.

Definition. Suppose a, z € Z. Then the Hamming distance of a, z is dist(a, z) =
{i|] a; # z;}|. The Hamming weight of z is wt(z) = dist(x,0).

Clearly dist(a,z) € {0,1,...n}. For a,z € Z§ we use a + = to denote the
usual group operation on Zf, i.e. coordinate-wise addition mod 2. For example,
01101 + 11100 = 10001.

Definition. The complement of a € Z} is written a and defined by a = {11...1} +
a.

Immediately from the definitions come the following relations:
Proposition. Let a,z € Zy. Then:

1. dist(a,z) = dist(z,a) = wt(a + )

2. wt(a) = wt(a+0...0)

3. dist(a,z) = dist(a + z,0...0)

4. dist(a,x) + dist(a,z) =n

Proof. The proofs are similar; we prove (4) as an example: x agrees with a or a at
each bit, but not both; summing over each bit gives the desired identity. O]
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4.2 The Hamming Distance Oracle

We wish to consider concept classes which hide functions of the Hamming distance.
According to our description of concept learning, a valid concept has range Z5. There-
fore, we are looking for concepts ¢, : Z§ — Zs such that ¢,(z) = f(dist(a,x)) where
f:0,1,...n — Zs and dist(a, x) is the Hamming distance between the input string
and the hidden string a. A natural first choice for the concept class is the mod 2
function:

BHuo={c.: 25 — 7| c, =dist(a,z) mod 2}

However, due to the next lemma, the oracles associated with this concept class are
nearly useless.

Lemma (from [HMO02]]) 1. Suppose a,a’ € Z3. If dist(a,a’) = 0 mod 2 then
dist(a,z) = dist(a’,x) mod 2 for all x € Z1.

Proof. The bits where a and o’ agree contribute equally to dist(a,z) and dist(a, ).
There are an even number of bits where a and o’ differ. Each of these contributes
1 to dist(a, x) or dist(a’,z) but not both. Therefore, over all such bits the parity of
dist(a,x) changes by the same amount as the parity of dist(a’, ). O

The lemma shows that the most information about a target concept ¢, € BH,,»
than any algorithm can learn, quantum or classical, is wt(a) mod 2. With the fore-
sight that it will be successful, we are compelled to find other functions of the Ham-
ming distance that may provide information that a quantum algorithm can use. In-
deed, one such function is presented below that allows single-query learning with
certainty when n is even.

4.3 The Mod 4 Hamming Oracle

Lemma (4.2) shows that for #,, 2, f = dist(a,z) mod 2 provides a (mostly) useless
oracle. However, [MePo 2009] show that a concept class hiding a function that returns
the second least significant bit of dist(a, z) provides a learning problem which requires
only one oracle query. The least significant bit b(d) is defined as

b(d) = 0 ford=0,1 (mod 4)
)1 ford=2,3 (mod 4)

Hence we are considering the concept class

H ) = {ca t Z5 — Lo | ca(2) = b(dist(a,z))}

This concept class comes with a caveat: if n = 1 mod 4, then there are only 2!
distinct concepts in H? ,.

Proposition. If n =1 mod 4 then b(dist(a,x)) = b(dist(a,x))
Proof. See [MP09]. O
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Therefore ¢, is equivalent to ¢;. However, if n is even, there exists a quantum
algorithm to identify a target concept with a single query, provided by [MP09].

Theorem 4.1. Let the concept class M., = {ca : Z5 — Zo | ca(x) = b(dist(a,x))}.
Let n be even. Then a quantum algorithm can determine a target concept c, € Hfm
with a single oracle query.

The proof relies on the following lemma, the proof of which are found in [MePo
2009]. For = € ZY, define & by

. x if wt(x) is even
Tr =
T if wt(x) is odd

When n is even, the map x — # is a bijection, and we may define a matrix P : C*"
by its action on the computational basis:

P(z) =1z
P is clearly unitary, and hence a valid operation to use in a quantum algorithm.
Lemma. Let a,z € Zy. Then
(—1)Pistla)) — (_1ywte)(_)wtlz)(_q)ed

Proof. (Theorem 4.1)
An oracle associated with a concept ¢,, denoted O, acts on the computational basis
by

O, |z, r) = |z, 7 @ b(dist(ax)))

The theorem is proved by providing the following algorithm, from [MePo 2009]:

Algorithm: Hamming Concept Class for even n

1. Prepare the state

[@1) = (H*" @ H)(|0...0) @ [1)) = [m) @ [—)

2. Apply the the operator D ® I which acts on the computational basis of C*" as
D |z) = (=1)2@H@) |2} to |Py):

D) = D [Dy) = % 3 (— 1)) |3y @ | )

z€ly

3. Apply the oracle O, to |Ps):

1 .
|@3) = Ou |B2) = Y (F)MHEN () EeD) j7) @ | )
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By the lemma, we may rewrite |®3):

b(wt(a))

wt(z)) a-& T .
o) = S (- 192 2 & |-)

TELy

4. Apply P® I to |P3):

(—1)bwt@) Z (= DY@ (—1)*® |2) @ |—)

By) =P |bg) =~
|4> |3> \/2_71 —
TCLg

since P is a bijection,
(—1)blwt(@)
V2n -

T

24) = ()R (1) ) 2 |-)

oS

5. Apply H®" ! to |®,):
[®5) = (H" 1) [®4) = (=1)*“ |a) © |0)

6. Measure |®5) in the computational basis to observe the state |a0) with proba-
bility 1.

The algorithm is summarized as:

la0) = HO"Y(P @ )0 (D @ [)HE™1[0- - 0) |1)

4.4 Y-Valued Concept Learning

Although the simplest Hamming oracle fails to provide a suitable learning environ-
ment, [HM02] and [MP09] show that it is possible to use the Hamming distance to
identify a string with a single query. In the first paper, the Hamming distance is
calculated mod 4. However, this operation returns an element of Z, rather than Z,,
and thus involves oracles that act on a 4-bit response register. We are compelled then
to generalize the range of concepts to sets larger than Z,.

Definition. Let Y be a finite set. A Y-valued concept isamapc: X — Y. A
Y-valued concept class is a set of concepts C¥ = {c, : X — Y'}. The goal of a
concept learning algorithm is to identify a target concept ¢ € C¥.

When |Y| = 2 the definition specifies to the previous notion of concept learning.
The oracles associated with Y-valued concept classes must act on Y dimensional
response registers. Recall that for |Y| = 2, the action of the oracle on a computational
basis element |z,b) € C*" ® C% was |z,b® f(z)). However, the operation & no makes
sense on a |Y| dimensional response register because Y may not be endowed with a
group operation, and we must consider a much larger set of possible operations on
the register. We therefore have an admittedly vague definition for a Y-valued oracle:
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Definition 1. A Y-valued oracle associated with a concept ¢ € C¥ = {c, : Z? —
Zy} is an oracle OY which acts on a computational basis element |z,b) € C*" @ C¥
by

O (|,0)) = |, ge(x) (b))

Where g : Zy — Zy is some function acting on the response register, determined
by the concept c.

We are able to describe the family of concept classes which constitutes the main
investigation of this paper.

Definition. Let n,r € Z*. An (n, r) Hamming concept class is a set of -
valued concepts H,, = {c, : Z§ — Z,} such that c,(x) = f(dist(a,z)) for some
[ lpy1 — Zy.

The previous algorithm shows that concepts in Hsy 2 are learned in a single query
with a quantum algorithm (for any & € Z%) with a suitable choice of f,(x) =
b(dist(a,x)).

4.4.1 The 2-bit Register Hamming Concept Class

The next algorithm, found in [HMO02], shows that concepts in H,, 4 are identified in a
single query using f,(z) = dist(a,z) mod 4. The algorithm uses the 4-dimensional
discrete Fourier transform F,, and the “bit shift” operator T, : C? @ C? which acts
on the computational basis by Ty |z) = Ty|z @ 1). Here & denotes addition mod d.
We may calculate, from the definition of the discrete Fourier transform, the matrix
representation of F4 in the computational basis:

1 1 1
=1 =
-1 1 -1
- —1 1

[\
—_ = = =

. . 1 2 . .
The algorithm also implements S = \/iﬁ (z i), due to its action on the computa-

tional basis:
Lemma 1. Suppose x € Zy. Then
g®n ’SL’ Z dzst (z,y)

yEZ"

Proof. We express S®" in outer product notation:

1
Sz = (—
)= (7
If we group the tensor products together, we see that each computational basis ele-
ment |y) : y € ZY is multiplied by a factor of i for each bit in which z and y differ,
which is what the lemma states. ]

((10) +[1)) (O + (7[0) + [1)) (1)*" |} (4.1)
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To each concept ¢, € H, 4 is associated an oracle which hides the function f =
dist(a,x) mod 4). Therefore the oracle requires a 2-bit register to hold the output.
Hence each oracle O, acts on C*" ® C*. We index the computational basis of C* by
{]0),]1),]2),|4)}. Therefore we may express the action of the oracle as

O |2,b) = |2,b® (dist(a,x) mod 4)) = (I®" @ T |z, b)
We present the algorithm:

Algorithm: 2-bit Register Hamming Learning
1. Apply H®" ® Fy to the state |0...0) |1):
|[@1) = (H®" ® F4)[0...0) [1 \/_Zp: — 1) +i[2) —i]3))

TELy
2. Apply the oracle O, to |®;). First, note that
T(0) = [1) +i[3) —i|4)) = —i([0) — [1) +i[3) — i 4))
Therefore

0u11) = <= 3 (=" 1) © 5(10) ~ 1) +i[2) — i }3)

TELy

3. Apply S®" ® I to |®3). By the lemma,
n 1 -\ dist(x \dist(a,r 1 : :
@) = (5500) [82) = 2 37 (@)D (-0 [y (0)-[1) 44 12) -1 j3)
T,YyeLy

Note that when summing over y, if y = a, then the summand becomes

Z (i)dist(x,a) (i)dist(a@) ’CL> —9gn |a>

T €Ly

Therefore the coefficient of a is 1; hence the first tensor factor is simply |a) since
it is a unit vector. Hence

195) = la) @ 5(10) +4 1)~ [2) — i 3)

4. Apply the operation I ® F,; ' to |®3) to obtain
@4) = (I ® F;")|®s) = |a, 1)

And measure the resulting state in the computational basis to receive outcome
al with probability 1

The algorithm is summarized (letting I represent the identity transformation in
both C?" and C*):

lal) = (I @ F; ) (S®" @ OL(H®" @ F4)|0...0) 1)
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4.5 The Permutation Model

We have seen that the (2m,2) and (m,4) Hamming distance concept classes (for any
m € ZT) allow perfect single query learning. A next question is to determine how
well a single-query algorithm can learn concepts in a (2m + 1,2) Hamming distance
concept class. For all algorithms, we assume that we pass the equal superposition
state to an oracle associated with a concept ¢,, denoted O,. Therefore, the prob-
lem of determining how well a quantum algorithm will learn from a concept class
consists of two parts: first, the concept class must encode the “best” function of
the Hamming distance. Recall that a concept in a Hamming distance concept class
co(r) = f(dist(a,x)). Second, we must determine the “best” response register |b) to
send through the oracle (tensored to the equal superposition state). For all of algo-
rithms with 1 dimensional response registers considered so far, |b) = |—) provides the
best choice of response register. In both cases, the word “best” refers to a configura-
tion that will identify a target concept in a single query with the highest possibility
possible.

For a 1-dimensional response register, an oracle acted on a computational basis
element |z,b) € C*" @ C? by

O, |z, b) = |z, & [, (2))

We wish to generalize the action of the oracle on the response register beyond the &
operation. Y-valued Hamming distance oracles hide functions f., : {0,1,...n} — Z,,
where f., (z) is a function of dist(a,z). All possible actions on the range Z, are de-
scribed by the symmetry group S,. To that end, we associate each possible f,. that
maps the computational basis of C" into itself with a map o : Z,, — S,. For example,
just adding the Hamming distance to the response register corresponds to the map
d — (12)?. The 2-bit Hamming distance oracle corresponds to the map d — (12)%@.

Remark This generalization still does not describe every possible oracle action
on a Y dimensional response register — only those which map the computational basis
of the response register into itself. The most general quantum oracle would allow any
unitary transformation of the response register. However, the permutation model
retains analogy with a classical oracle, which, lacking superposition, may only map
Lop — L.

We redescribe the action of the oracle formally: suppose C is an (n,r) Hamming
distance concept class. For each possible Hamming distance d € Z, we associate a
permutation o4 € S,. Then the oracle associated with ¢, acts on the computational

basis of C*" ® C" by
Oa |$, b> — |$> ® ‘O'dist(a,x)<b>>

We generalize the notion of the membership query matrix to a quantum learning
matriz, whose a'" column is the state produced by querying O, with the input state

1) ® |phi).
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Definition. Suppose C is an (n,r) Hamming distance concept class. Suppose |¢) €
C" is a unit vector chosen to be the initial state of the response register. Then the
quantum learning matrix A is an 2"r x 2" matrix whose a* column is

Ouln) @ 19))-

We would like to know the probability of successfully learning a target concept
with a single guess from a Hamming distance oracle. Measuring this probability
requires using some measurement; we know that in many cases the square-root of
the Gram matrix G = A'A of provides the optimal measurement. Calculating the
square-root matrix may be difficult if n is large. However, we are equipped with a
useful theorem that shows that the Gram matrix of a quantum learning matrix of
any Hamming concept class is diagonalized by a Hadamard matrix.

More generally, if a matrix exhibits the symmetry that the (a,b) matrix element
is equal to the (a + b,0) matrix element, then it is diagonalized by the Hadamard
matrix. Note that the matrix is indexed by elements of Z7.

Theorem 4.2. Suppose G is a 2" x 2" complex matriz such that G, = Gayb0). Then
H®™ diagonalizes G.

The proof makes use of the following lemma:
Lemma 1. Suppose j € Z3. Then
1 : 1i45=0...0
{0
TE€ZL?

on 0 otherwise

Proof. First suppose j =0...0. Then z-j5 = 0 for all z € Z%, so each summand is 1,
proving the first case. Therefore, suppose wt(j) =k > 0. Then z-j =1 mod 2 iff =
and j share an odd number of ones. Hence, by counting the number of strings which
share an even and odd number of 1’s with j, we write the sum:

k
1 (kK
_2n—k —1)¢ =0
7 L)

This is a well-known combinatorial identity. O

Proof. We calculate the matrix H*"GH®".

1 ) )
(HE"GH®");; = > HEGu HEY = o= S (=1)""(=1)"7G,,

Y,J n
x,yeLy z,yely

For a fixed 2 € Z%, the map y — y + 2 is a bijection. Furthermore, (—1)¥+2)7 =
(—=1)*J(=1)¥J. Finally, due to the symmetry assumption on G, G, 1z = Guizy =
G,y Therefore we rewrite the sum:

> | 3 e, | e

yeLy e€Ly

By the lemma, this is 0 unless i + 7 = 0...0, that is, ¢ = j. Therefore the theorem is
proved. ]
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We shall see that the quantum learning matrix for any Hamming distance con-
cept class admits the symmetry described above, and is therefore diagonalized by a
Hadamard matrix.

Theorem 4.3. The Gram matriz of the quantum learning matriz G = ATA for any
Hamming concept class satisfies G ; = Giqjo-

Proof. An oracle O, acts on an arbitrary |z) @ |¢) € C*" ® C" where |z) is a com-
putational basis element by

Oc, (10) @ [0)) = |¥) @ Uaist(a,z) |0)

For some unitary operator Ugis(a,z)- Therefore we may calculate the Gram matrix:

Gig = (Oc,(Inn) @ D)) (Oc; (1) © 16)))

T

= Z 17) ® Ugist(i,) |b) Z 1Y) @ Udist(y,j) |b)

TEZY yeZy

= (Udist(i) 0)" (Uaist 15))

TELY

For a fixed c € Z%, the map x — x + sc is a bijection. Hence we rewrite the sum:

E: ahwﬂuﬁm”b»T(UwﬂUm+Jb»:: 2: a&wﬂﬂﬂ@”b»T(U@dU+q@|M)

€LY TELy

- Gi+c,j+c
By the same calculation. Finally, using ¢ = j,
Gij = Gitsjo

as desired. [

4.5.1 Numerical Results

The following proposition is a conglomeration of previous results discussed in quantum
state discrimination and quantum learning, and allows for a simple implementation
of numerical methods for determining the best permutations and response register
for (n,r) Hamming distance concept classes.

Proposition 1. Let C be an (n,r) Hamming distance concept class. To each c, € C
fix a permutation o, of Z,. Also fix the response register |b) € C". Let B be the nr xn
matriz whose a™ column is the state O, |n,) @ |b). If the columns of B are linearly
independent, then the square oot of the Gram matriz G = BT B describes the optimal
measurement, with success probability |Tr(v/G)|?/2".
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Proof. This is a reformulation of the statement that the square-root Gram matrix
provides the optimal measurement when the states to be distinguished are linearly
independent and v/G has constant diagonal. Hence is suffices to show that VG =
Vv BB has constant diagonal. We know from Theorem 4.2 that H®" diagonalizes G,
so D = H®"GH®". Therefore vG = H®"/DH®". We calculate the i"* diagonal
entry of VG:

Vo= 3 3 (VD (1)

TELY yeELy

= é%’j{: V/Iiax (4’2)

TeLy
Therefore each \/@H is the same. O

This justifies the numerical method used by [MePo 2009] to study the (3,2), (5,2)
and (5,3) Hamming distance concept classes with the permutation model to find both
the optimal permutations and optimal response register:

Numerical Method:

1. Fix n and 7.
2. Repeat steps 3 and 4 for all possible permutations o, : Z, — S,:

3. Choose a initial response register unit vector |b) € C". By the above proposition,
we may calculate the success probability of inputting the state |n,) ® |b) to an
oracle Q, .

4. Maximize the success probability over all |b) € C".

Remark. The numerical method, and technique used in the following sections,
measure the states of the quantum learning matrix with the square-root Gram ma-
trix. However, this is the optimal measurement only if those states are linearly
independent. Recall that if the states span a k < 2" dimensional subspace of H,,
the maximum success probability is 2% For general n and r, it is conjectured that
optimal permutation assignments will result in linearly independent columns of A,

but has not been proven.

4.6 Analysis of the (n,2) Permutation Model for
odd n

The ultimate goal is to determine analytically the optimal permutations and best
response register, without the numerical approximation. For now, we consider only
(n,2) Hamming distance concept classes (for odd n). This requires an explicit calcu-
lation of the success probability P = |Tr(v/G)|?/2".
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Theorem 4.4. Suppose C is an (n,2) Hamming distance concept class where n is
odd. Let {oq: 04 = (1) or (12)} be a set of permutations indexed by the Hamming
distance d € Z, so that the oracle O, associated with a concept ¢, € C acts on a
computational basis element |z,b) € C*" @ C? by

O, |2,0) = |2, Taist(a,z)(D))

Fix a response register |¢) € C2. Then the success probability can be expressed as a
function of a real variable

P(y) =

NeT (\/a+bv+0¢(1—7))2

where v = (X ¢|p) € [—1,1] and a,b € Z* such that a +b = 2*" and c € R*.

Here X = (1 0

0 1 . : .
) denotes the “bit-flip” unitary transformation.

Proof. Let A be the quantum learning matrix for C, i.e. the matrix whose i'* column
is

O.(

) @ 19)) Z |z) @ Xdisttim) | )

TELy

where

Xadist(i,x) — X lf O-diSt(ivx) = (12)
Iit Odist(i,x) = (1)

Let G = ATA be the Gram matrix of A. From Eq. 4.2 we see that

2

- | = vD.. (4.3)

TELY

So we must calculate the values \/Ewc, which is the square root of the diagonal matrix
of G. We know that the Hadamard matrix diagonalizes G, so

Dig=>_ Y HZ'G,,Ht

zEZQyEZ"
zx z+y)-i
o S D G = 5 3 Y ()G
TELY yeELY TELY yeELY
z
=Y (-1)"Gje (4.4)
JELY

We see that calculating the success probability boils down to calculating the first
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column of the Gram matrix of A. Consider one such entry, G, .

G0 = (O, (1) @ 16))) (O (Imn) @ |6)))

T
1 . . .
L[S e xtaeaig ) |5 e x|

T €Ly YyELy
1 ist(g,x ist(x
=5 D (el(X DTt g)
xELY

Since XTX = XX = I, the summand is equal to (¢|¢) = 1 if Xst0) = Xdist(z,0

and is equal to v = (X¢|¢) if X#st0) £ Xdstz0)  Note that if ¢ = g , then
v = (Xd|p) = a*f + f*a € R. Also, the Cauchy Schwarz inequality tells us

[ (| X2 |12 < (o) (X | X ) =1
Therefore v € [—1,1], and ~ achieves the endpoints of the interval at |¢p) = |—) and

|6) = |+)-
We return to the previous sum. If X%#t0:2) = X%st@0) for all x € Z2 then the
sum is equal to 2". We therefore define the integer f; to be the number of times in

the summand that X #st0:#) o£ X dist@0) Therefore the sum may be written as:
1 n
Gio = 5, (2" + fi(v = 1))
for some f; € Z. It’s time to return to the elements of D. From Eq. 4.4,
Dy =Y (=1)"7Gj
jery

First, note that

Duo= 3" Gro= 3 5@+ fily = 1)) = 52"~ (1=7) 3 ;)
JELD JELR JELL
= 21—n(a + by)
For a = 2%" — Djeny fiand b =37, ;0 f;. Clearly a,b € Z and a,b > 0 since f; < 2.
Furthermore, a + b = 22",
Let us now consider diagonal elements D;; such that wt(i) > 0. Then Eq. 4.4
shows that

Dii= 5 3 (C17(2"+ 7~ 1)
o DI ECEE D S

JEZY JELy

= o= 1) Y (1),

JEZLY
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Remember that D, ; is an eigenvalue of the positive operator G = A'A and is therefore
positive; (7 — 1) is always negative, so we may write

Dii = —(ci(1 —7))

for some ¢; € ZT when wt(i) # 0. Let us substitute all the results into Eq. 4.3:

2
2

1 1
P(y) = on Z VD, | = on VDo + Z VD,
i€zy i€zy
i#0

1
e | Vet v+i€%w< 7)

i#0

1 2
= oy +ey/T=7)
o %( a+by+ey/T—7

where ¢ = Zf; /¢ € R*. Hence we have proved the theorem. ]

We know wish to maximize P(v). Luckily, there are only two radicals in v/ P(y),
so we may easily calculate the derivative.

Proposition. Suppose v/ P(v) is function of a real-variable of the form

P(v) = 2n\1/2_n ( a—l—b’y%—cﬂ)

for a,b,c > 0, n an odd positive integer, and a +b = 2". Then /P(7) has a single
critical point, at
b? — c*a

T b+ 12

b+ c2
P(y) =1/ 5]

Proof. Differentiating 1/ P() and setting it equal to 0 we see

/

g

and

V(1 —7) = c(a+by)
So v/ P(g) has one critical point. We solve for ~:

b — Pa

2 2 2 2 —
’Y(bc +b):b —Cca < ’y/:m
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Then

ab + b2 \/bc2 + c2a
923n, / P(~!) =
V2V ) \/02+b+c b+ 12
2 2 N
(Vo+ Sy =¥ LE

Vb + 2 % Vb

]

Since this is the only critical point of P(y) for v € [—1,1]; therefore P(vy) is
maximized at v =+/, 1, or -1.

Corollary. At the critical point +',

N
P(y) = IT

The maximum value of P() over the interval [—1,1] is:

b+ c? b+ 2
max{ anf ,P(1), P(~1)} = max{ 2%0 NVa—b+ev2)

unless v ¢ [—1,1] when the success probability is just \/a — b+ cv/2

4.6.1 Summary of Results

The purpose of the last section is to provide a first step towards an analytic de-
scription of the best possible success possibilities for a the (n,2) Hamming distance
concept classes. This involves knowing the best permutation assignment for a given
n, which requires a grasp of the integers f; used in the proof of Theorem 4.4. Using
the combinatorial method of determining P(7), (see Appendix A for code), we have
extended the numerical results of [MP09] to find the best success probability for the
(7,2) Hamming distance concept class. We also present the redone results for the
(3,2) and (5,2) Hamming distance concept classes.

(3, 2) Hamming distance concept class: Numerical Results. The best
success probability P ~ .8000 is achieved with the permutation assignments oy =
01 = 03 = (1) while 0y = (12), and 09 = 09 = 03 = (1) while 0y = (12). In both
cases v &~ —.8000. Using the method of calculating the success probability described
in the previous section, we may prove (not included):

Proposition. For the permutation assignments describe above, the best success prob-
7. 4 o 4
ability P = ¢ aty' = —%.
(5, 2) Hamming distance concept class: Numerical Results. The best
success probability P & .7206 is achieved with the permutation assignments
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0'020'320'420'5:(1)

01 = 09

0p =01 =02 = 05

o3 = o4

In both cases v ~ —.9208.

(7, 2) Hamming distance concept class: Numerical Results. The best
success probability P & .7052 is achieved with the permutation assignments:

1.
0'020'420'5:0'7:(1)

0'1:0'220'320'6:(12)

0'020'220'320'7:(1)

o1 =04 =05 =06 = (12)
In both cases v ~ —.9954.
Examination of the data leads us to the following conjectures:
Conjecture 1 As n — oo, v — —1.

We see that for n = 7 the optimal response register is already very close to v = —1.
Remember v = —1 corresponds to the usual response regsiter |—).

Conjecture 2 Using the notation of Theorem 4.4, we conjecture that the optimal
permutation assignment has the highest possible value of c.

This claim is justified somewhat because it appears that a permutation can be
chosen such that ¢ > b; therefore the best probability would have a high value of c.

Conjecture 3 For a (n,2) Hamming distance concept class, there is always some
permutation assignment with success probability P > %

For even n, this is clearly the case (P = 1). For odd n, the data indicates that
there are permutation assignments that are similar to to the “second least significant
bit” permutation used in the algorithm for n even, suggesting that it is possible to
simulate that algorithm on some even subset of bits, and produce an algorithm that

succeeds with P = %






Conclusion

There are still many unanswered questions concerning the Hamming distance concept
classes. The ultimate goal is to analytically determine the best success probability
and therefore best permutation assignment for the (n,2) Hamming distance concept
class. Theorem 4.4 suggests that this may be possible with a sufficient understanding
of the combinatorics of the permutation assignments. Immediately, Conjectures 1-3
may be examined. The rank of the matrix A should also be studied; we remarked
that the best success probability intuitively requires the columns of A to be linearly
independent, but this is unproven.






Appendix A
Code

The code used to generate the numerical results is included here. It is written in
Python and requires the use of the numpy and sympy packages.

# Single-Query Hamming Distance Learning

This program is designed to provide insight into a problem of
quantum concept learning: determining a hidden string "a"

given an oracle which permutes the response register in some way
based on the Hamming distance between the input and the string "a".

Running the command HammingProb(n) will generate a file n=-.dat
that contains the following data for every permutation assignment:
- optimal response regsiter

- best success probability

- value of g (= \gamma in the thesis) at the critical point

- eigenvalues of the Gram matrix, sorted by Hamming weight

from sympy.matrices import *
import sympy as sp
import numpy as np

# Creates the n-bit Hadamard gate
def Hadamard(n):
h = Matrix([[1, 11, [1, -111)
H=h
for i in range(n-1):
H = np.kron(h, H)
return H

# Calculates the hamming-distance of 2 vectors
def hamming(u, v):

x = []
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y = []

for ¢ in u:
x.append (int (c))

for e in v:
y.append (int (e))

if len(x) == len(y):
d=20
for i in range(len(u)):

if x[i] !'= y[i]:
d = d+1

return d

else:
print x
print u
print y
return None

# determines the Hamming weight of an integer
def wt(u):
wt =0
for digit in np.binary_repr(u):
if digit == ’1’:
wt = wt + 1
return wt

# Creates the n-bit "Hamming-distance matrix" = HD

# where HD(i,j) = dist(binary rep’n of i, binary rep’n of j)

def HDistMat(n):
return Matrix(n, n, lambda i,j: hamming(np.binary_repr(i, width=n),
np.binary_repr(j,width=n)))

# The following function takes a permutation of the response register

# (which is a subset of {0, 1, ... n} for a two-bit register; 1 denotes

# a flip of the response register at that bit. Therefore, the function places
# a one whenver it finds a number contained in the permutation (subset)

# and a 0 if it is not contained there.

def PermuteAffect(sigma, M):
def f(x):
if x in sigma: return 1
else: return 0
return M.applyfunc(f)

# We are now able to calculate the (x,y)th entry of the Gram matrix G
# given a permutation sigma. G(x,y) = G(x+y,0) which is <Psi(x+y), Psi(0)>
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2xgxdist (PermuteAffect (x+y), PermuteAffect(0)) (the x+yth and Oth rows)
sp.Symbol(’g’) #This is a placeholder for the variable gamma
GTerm(M, a):

a=a% sp.sqrt(len(list(M.vec())))
u = list(M[0:1, 0:]1)

v = list(M[a:a+1, 0:])

d = hamming(u,v)

return (d*g + len(u) - d)

# Finally we can calculate a diagonal entry of the square-root
# Gram matrix, which depends only on GTerm(M, x+y)

def

def

def

dotsum(i, x, y):
return wt(np.bitwise_and(i, x)) + wt(np.bitwise_and(i, y))

bitsum(x, y, n):

u = np.binary_repr(x, width=n)
v = np.binary_repr(y, width=n)
diff = []

s =0

for i, dum in enumerate(u):
diff.append(np.bitwise_xor(int(ul[n-i-1]), int(v[n-i-1]1)))
for i, dum in enumerate(diff):
s = (2%x(1))*(diff[i]) + s
return s

SuccessProbFunc(sigma, n):

N = 2x%*n

M = HDistMat (N)

M = PermuteAffect(sigma, M)
d =[]

D=0

s0 =0

s2 =0

w=1

e = []

GTerms = []

# First calculate the first eigenvalue DO
for j in range(n+1):
GTerms.append (GTerm(M, 2x*j - 1))
for x in range(N):
sO = sO + GTerms[wt(x)]
d.append(s0)
D = sp.sqrt(s0)
# Calculate the rest of the eigenvalues, keeping track of the
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Appendix A. Code

def

# the coefficients of g so that the final values a, b, ¢ are recorded
# properly
for i in range(N-1):

O B O %%

s1 =0
for x in range(N):
k = ((-1)**(dotsum(i+1, x, 0)))*GTerms [wt(x)]
sl =s1 +k
s2 = s2 + sp.sqrt(sp.simplify(s1/(1-g)))
d.append(sl)

This is to make the output more readable

D + s2*sp.sqrt(l-g)
sp.simplify((D - sp.sqrt(d[0]))/(sp.sqrt(1-g)))
sp.sqrt(d[0]) + sp.sqrt((h**2)*(1-g))

pl = (float(D.subs(g, -1.0)))**2/(NxN*N)

#
a
b
c

crit

Calculating the critical probabilities and probs at g = -1

float(d[0].subs(g, 0.0))
float (N*N - a)

float (h)*float (h)

= (b*b - c*xa)/(b*c + b*b)

pbest = (1.0 + (float(h)*float(h))/b)/float(N)
for i in range(n+1):

e.append(d[2**i - 1])

return D, e, pl, pbest, crit

HammingProb(n) :

filename = ’n=’ + str(n) + ’.dat’
P = genPerms(n)

FILE = open(filename, ’w’)

for sigma in P:

if sigma == []: continue

else:
f, d, pl, pbest, crit = SuccessProbFunc(sigma, n)
FILE.write(’Permutation =’ + str(sigma)+ ’\n’)
FILE.write(’ (Sqrt 0f) Success Prob Func:\n’)
FILE.write(str(£f)+ ’\n’)

FILE.write(’Prob of success at g = -1: > + str(pl) + ’\n’)
FILE.write(’Prob of success at g = gcrit: > + str(pbest) + ’\n’)
FILE.write(’Critical point g = >+ str(crit) + ’\n’)

FILE.write(’Eigenvalues of Gram Matrix (sorted by wt(i)):\n’)
for eig in d:

FILE.write(str(eig)+’\n’)
FILE.write(’\n’)

FILE.close()
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