On the semisimplicity of braid group representations in C-linear, semisimple braided tensor categories.

Daniel Copeland

University of California San Diego

October 23 2021 AMS Fall Western Sectional Meeting Let B_k denote the k-strand braid group. Given a braided \mathbb{C} -linear tensor category \mathcal{C} , any object X gives algebra homomorphisms

$$\Phi_k: \mathbb{C}B_k \to \operatorname{End}_{\mathcal{C}}(X^{\otimes k}).$$

Question.

If \mathcal{C} is a semisimple category then are the braid representations semisimple?

Notation: X has "Property S" if the answer is yes (for all k).

Motivation

Knowing the braid reps are *a priori* semisimple helps in the classification of ribbon categories with fusion rules of Lie type.

Classification of tensor categories with fusion rules of Lie type:

No braiding

- SL(2): Kerler 1992
- SL(N): Kazhdan and Wenzl 1993
- SO(3): Etingof and Ostrik 2018

With braiding

- O(N) and Sp(N): Tuba and Wenzl 2003
- $SO(N), N \neq 4$: C. 2020

The results state that any semisimple (ribbon) category with the fusion rules of G (or a related truncated fusion ring) is equivalent to a quantum group category (possibly up to a twist of the associator and/or modifying the braiding.)

Unitary braided tensor categories have semisimple braid representations.

Unitarizability of quantum group categories.

 $C(\mathfrak{g}, q, l)$: the semisimple ribbon category constructed from the $\text{Rep}(U_q\mathfrak{g})$ with q^2 a primitive l-th root of 1.

m: ratio of long roots to short roots in \mathfrak{g} , squared

• Wenzl 1998: When m|l and $q = e^{\pi i/l}$, $\mathcal{C}(\mathfrak{g}, q, l)$ is unitarizable.

Corollary

These categories (and their Galois conjugates) have Property S.

Categories not included: Type BC with l odd (Rowell 2005), Type D with l odd, Type E_6 with $3 \nmid l$, Type E_7 with $2 \nmid l$.

More examples:

- Categories with Property F (image of braid group is finite)
 - Includes the Drinfel'd centers of pointed categories (Etingof-Rowell-Witherspoon 2008)
 - More generally, all known weakly integral categories.
- Symmetric tensor categories
 - More interesting: if X is a self dual object, are the representations of the Brauer algebra $\operatorname{Br}_k(\dim X)$ in $\operatorname{End}_{\mathcal{C}}(X^{\otimes k})$ semisimple?

Categories generated by braid morphisms.

If the maps $\Phi_k : \mathbb{C}B_k \to \operatorname{End}_{\mathcal{C}}(X^{\otimes k})$ are onto, then X has Property S.

Quantum group examples: variants of "Quantum Schur duality"

- For SL(N), X the vector rep: Jimbo 1986, Kazhdan-Wenzl
- For $\mathfrak{sp}_{2n},\mathfrak{so}_{2n+1},O(N),X$ the vector rep: Wenzl 1990, Tuba-Wenzl
- Many cases when q not a root of 1, including G_2 , X=7 dim'l rep: Lehrer-Zhang 2006

Non-example: SO(2n)-type quantum group categories, X the vector rep'n. In addition to the braids, an additional generator in $\operatorname{End}_{\mathcal{C}}(X^{\otimes n})$ is required (corresponding to the Pfaffian.)

SO(2n)-type categories.

The SO(2n)-type fusion rings are the subrings of $\mathfrak{so}(2n)$ -type fusion rings spanned by simples with integer highest weights (no spin rep'ns).

- \mathcal{C} : semisimple ribbon category with SO(2n)-type fusion rules.
- \bullet X: object corresponding to the vector rep'n.

Thm (C. 2020): Classification of SO(2n)-type categories, n > 2.

Up to a \mathbb{Z}_2 -cocycle twist of the associator and modification of the braiding, \mathcal{C} is ribbon equivalent to a quantum group category.

Corollary of proof: The braid representations in $\operatorname{End}_{\mathcal{C}}(X^{\otimes k})$ are semisimple.

Ideas in the proof: reduction to the study of braid representations.

 $\mathcal{C}\text{:}$ arbitrary semisimple ribbon category with fusion rules of type SO(2n).

• Kazhdan-Wenzl reconstruction: since C is \mathbb{Z}_2 -graded the category is determined (up to a \mathbb{Z}_2 -cocycle twist) by the tower of algebras

$$\cdots \to \operatorname{End}_{\mathcal{C}}(X^{\otimes k}) \xrightarrow{-\otimes 1} \operatorname{End}_{\mathcal{C}}(X^{\otimes k+1}) \to \cdots$$

and the tensor product maps

$$\operatorname{End}_{\mathcal{C}}(X^{\otimes k}) \times \operatorname{End}_{\mathcal{C}}(X^{\otimes j}) \to \operatorname{End}_{\mathcal{C}}(X^{\otimes k+j}).$$

• The algebras and inclusions are determined by the fusion rules.

• In the braided setting, the braid morphsims determine the tensor product of morphisms:

• Hence the category is determined by the braid representations together with the fusion rules.

Computing braid representations from SO(2n)-type fusion rules + the fusion rules.

Step 1: The braid element $c_{X,X} = X$ always acts semisimply and since

$$X^{\otimes 2} = \mathbf{1} \oplus Y \oplus Z$$

there exist $q, r \in \mathbb{C}^{\times}$ so $c_{X,X}$ has eigenvalues $(r^{-1}, q, -q^{-1})$.

Step 2: Prove that the braid representations depend only on q (this is "braid rigidity" in the language of Martirosyan and Wenzl (2020)).

- This step is made complicated by having to rule out non-semisimple braid representations and relies heavily on the fusion rules.
- We use the q-Jucys Murphy approach to compute the twist values on simple objects while simultaneously obtaining restrictions on r and q.
- Finally one proves the braid representations are uniquely determined by q. The resulting representations are semisimple.

Final remarks on the Property S question.

A "no" answer means Property S is a nontrivial obstruction to the properties examined earlier (unitarizability, property F, generation by braids).

A "yes" answer to the semisimplicity question will be useful for classification techniques based on the computation of braid representations.

Thanks for listening!