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Guess the permutation!

Consider a group of permutations G acting on a finite set Ω.

Suppose someone draws an element g uniformly from G and hides it in a
black box (or oracle).

We can access the hidden permutation by submitting an element α ∈ Ω to
the oracle and the oracle replies with the element g · α.

How many accesses (or queries) are needed to determine the unknown
element g?
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Query complexity.

The answer is a long-studied invariant of permutation groups called the
minimum base size (or just base size), denoted b(G ).

For instance, b(Sn) = n − 1 and b(An) = n − 2.
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The quantum version

To “quantize” this problem is essentially to linearize it. Every group
element g ∈ G corresponds to a unitary operator

π(g) : CΩ→ CΩ.

(So each g acts by a permutation matrix in the natural basis).

A quantum algorithm to determine the permutation g consists of choosing
input states, feeding them to the hidden unitary π(g), measuring the
result, and making a guess based on the measurement.
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Result

Theorem. (C., Pommersheim)

An optimal t-query quantum algorithm successfully identifies the
permutation g with probability

Psuccess =
1

|G |
∑
χ

dim(χ)2

where the sum is over all irreps which appear in CΩ⊗t .
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Quantum query complexity

Corollary.

The exact quantum query complexity of Guess the Permutation! with
G acting on Ω is

γ := min
t
{every irrep of G appears in CΩ⊗t}.

The bounded error quantum query complexity of Guess the
Permutation! is

γbdd := min
t
{
∑
χ

dim(χ)2 ≥ 2/3}

with the sum taken over all irreps χ appearing in CΩ⊗t .

γbdd ≤ γ ≤ b(G ).

Strict inequalities mean quantum speedups.
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Special case

The full symmetric group

G = Sn (with Ω = {1, . . . , n}. This is the defining rep’n of Sn and splits as

CΩ = V[n] + V[n−1,1].

Taking the t-th tensor power of this rep’n we get all irreps whose
corresponding Young diagrams have ≥ n − t columns. Therefore:

γ = n − 1

(this many queries are needed to get the sign representation [1n]) and

γbdd = n − 2
√
n + O(n1/6)

(deduced using RSK correspondence, Baik-Deift-Johannson Theorem,
Tracy-Widom distribution).
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Computer example

Mathieu Group

Take G = M12 which acts sharply 5-transitively on 12 points. Therefore
b(M12) = 5. Using GAP, we see that γ = 4 (ie every irrep of M12 appears
in the 4th tensor power of the defining rep, and no sooner). So we get a
1-query speedup.

In fact the base size is known to be small (as in ≤ 7) for large classes of
permutation groups, including many permutation rep’ns of sporadic simple
groups (Burness, Brien, Wilson ’07), so we don’t get big speedups looking
here.
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Outline

1 Introduction by example

2 Quantum oracle problems: background and models
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Learning from an oracle
In a learning task, a student (learner) seeks to determine some hidden
information known by an oracle (teacher).

student oracle

Question

Answer
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Mathematical examples I

Van Dam’s algorithm: identification of a Boolean function with
evaluation queries (van Dam ’98)

The oracle hides: a Boolean function on n inputs f : {1, . . . , n} → Z2.
The student wants to know: What is f ?
The student may ask: What is f (x) for some x ∈ {1, . . . , n}?
The oracle answers: f (x) ∈ Z2.

Special case of GtP!

Ω = {1, . . . , n} × Z2 with G = Zn
2 acting by

f · (x , b) = (x , b ⊕ f (x)).

As a G -rep, CΩ contains the trivial rep and the irreps

−1× 1× · · · × 1, 1×−1× · · · × 1, . . . (ie Hamming weight ≤ 1). Tensor powers

give the irreps with higher Hamming weights. Counting the number of sequences

by Hamming weight yields a binomial distribution w/parameter n, so we need

n/2 + O(
√
n) queries for (bounded error) success (vs n classically).
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Mathematical examples II

Bernstein-Vazirani algorithm ’97

The oracle hides: an n-bit string a ∈ Zn
2.

The student wants to know: What is a?
The student may input: Any n-bit string x ∈ Zn

2.
The oracle answers: x · a = x1a1 + x2a2 + · · · ∈ Z2.

Query complexity

Classically: An optimal algorithm requires n queries to determine f .
Quantumly: The hidden string can be determined (with probability 1) in
a single query. (The permutation rep’n for this problem already contains
every irrep.)
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Mathematical examples III

Many more..

Simon’s problem (’95), discrete logarithm (Shor ’94), Deutsch-Jozsa
problem (’92), PARITY (BBCMdW ’98), Grover search (’96), hidden
subgroup problem, polynomial interpolation (CvDHS, ’16), qudit
summation (MP ’11, Zhandry ’15)...

We’re interested in the separation between quantum and classical
computing power.

Given a learning problem we must

1. Construct algorithms to solve the problem (upper bound on query
complexity)
2. Find the minimum number of queries required (lower bound on query
complexity).
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Quantum learning models.

Quantum setting: oracle hides an unknown unitary operator sampled from
a finite set of unitaries.

A quantum computer may prepare states (unit vectors in the Hilbert space
of the computer), input them to the operator, and perform measurements
to deduce information about the hidden unitary.

O

workspace

|ψ〉 Measure

Single query algorithm to learn O.

Daniel Copeland and Jamie Pommersheim (JMM San Diego)Quantum query complexity of symmetric problems. January 11, 2018 14 / 19



Quantum learning models.

Quantum setting: oracle hides an unknown unitary operator sampled from
a finite set of unitaries.

A quantum computer may prepare states (unit vectors in the Hilbert space
of the computer), input them to the operator, and perform measurements
to deduce information about the hidden unitary.

O

workspace

|ψ〉 Measure

Single query algorithm to learn O.

Daniel Copeland and Jamie Pommersheim (JMM San Diego)Quantum query complexity of symmetric problems. January 11, 2018 14 / 19



Quantum learning models.

Quantum setting: oracle hides an unknown unitary operator sampled from
a finite set of unitaries.

A quantum computer may prepare states (unit vectors in the Hilbert space
of the computer), input them to the operator, and perform measurements
to deduce information about the hidden unitary.

O

workspace

|ψ〉 Measure

Single query algorithm to learn O.

Daniel Copeland and Jamie Pommersheim (JMM San Diego)Quantum query complexity of symmetric problems. January 11, 2018 14 / 19



Multiple query models.

Adaptive queries.

|ψ〉
O

U1

O
. . .

O
Ut−1

O
Measure

Algorithm designer gets to pick the input |ψ〉, intermediate unitaries
U1, . . .Ut−1, and the measurement.
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Multiple query models.

Nonadaptive queries.

|ψ〉

O

O

...

O

Measure

A t-query non-adaptive algorithm with access to the oracle O is exactly
the same as a single-query algorithm with access to the oracle O⊗t !
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Symmetric problems use nonadaptive algorithms.

Theorem. (C., Pommersheim)

If the unknown unitaries in a learning problem form a group (ie they form
a unitary representation π : G → U(V ) of some group G ), and the goal of
the learning problem is to determine an unknown element g ∈ G , then the
optimal success probability of a t-query algorithm is achieved by a
non-adaptive algorithm.

Remark. The actual result concerns a more general learning problem
(Coset Identification).

Theorem.

(Bucicovschi, C., Meyer, Pommersheim 2016) An optimal single-query
algorithm to identify an unkown element g ∈ G succeeds with probability

Psuccess =
1

|G |
∑
χ

dim(χ)2

with the sum taken over all irreps χ which appear in the rep’n V .
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Putting these together:

Suppose π : G → U(V ) is a unitary rep’n of G , and an oracle hides a
unitary operator π(g) (with g drawn uniformly at random).

Theorem.

An optimal t-query quantum algorithm successfully identifies the unknown
unitary π(g) ∈ U(V ) with probability

Psuccess =
1

|G |
∑
χ

dim(χ)2

where the sum is over all irreps which appear in V⊗t .

A bunch of new, non-abelian learning problems to study via character
theory.
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End

Thank you! Stay tuned for more from Jamie on Saturday!
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