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Why ribbon categories?

Ribbon categories are highly structured algebraic objects,
strongly motivated by low-dimensional topology, which permit
topological reasoning in a graphical calculus.

“In these days the angel of topology and the devil of abstract
algebra fight for the soul of each individual mathematical
domain.”

–Hermann Weyl, Invariants, Duke Jour. Math, 1939.

We study ribbon categories algebraically but they arise in
topological, analytic, geometric and physical contexts.
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Quantum topology: algebra to topology
Quantum algebraic data provides local data for the
construction of TQFTs, and in turn invariants of manifolds.

TQFT input dimension
of invariant

Reshetikhin-Turaev (1991) modular tensor cat 3
Turaev-Viro (1992) spherical fusion cat 3
Crane-Yetter (1993) ribbon cat 4

...
Douglas-Reutter (2018) spherical fusion 2-cat 4

Chaidez-Cotler-Cui (2020) Hopf algebra 4

Theorem (Cobordism Hypothesis. Baez-Dolan, Lurie)
{

fully extended
(n+ 1)− TQFTs

}
←→

{
fully dualizable objects

in a symmetric (∞, n)-category

}
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Using topology for algebra: the graphical calculus
In order to analyse ribbon categories we go the other way, using
topology to study algebraic objects and their representations.

Example

The n-strand braid group Bn, defined topologically.
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Generators and relations

Theorem (Artin, 1926)

Bn is generated by σ1, . . . , σn−1, subject to the relations

σiσj = σjσi for |i− j| ≥ 2

σiσi+1σi = σi+1σiσi+1 for i = 1, 2, . . . , n− 1

These are the braid relations. Having a short list of generators
and relations helps to construct representations of Bn, as well as
identify known objects as quotients of Bn (or its group algebra).

σ1 σ2

=

σ1σ2σ1 = σ2σ1σ2

Generators and relations for B3
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The full twist

On an elementary level our topological intuition can be used to
study the algebraic structure of the braid group.

∆2
4 := = =

(σ1σ2σ3σ1σ2σ1)
2 = (σ1σ2σ3)

4

The full (counter clockwsise) twist on 4 strands
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Full twist is central

B

= B =

B

∆2
4 commutes with every braid on 4 strands.
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What are the axioms of a ribbon category?
A ribbon category is a C-linear semisimple monoidal category
with compatible braiding, duality and twist structures.
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Blackboard framing
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Where are ribbon categories?

Symmetric tensor categories are
everywhere, e.g. Vec, Rep G,
combinatorial categories.

=

X Y X Y

, = ±

XX

In Vec, X and Y are finite dimensional C-vector spaces.

X Y

XY

x⊗ y

y ⊗ x

XX∗

α⊗ x

α(x)

X X∗

1 ∈ C

∑
i xi ⊗ xi

Theorem (Deligne, ’02)

Any symmetric tensor category (subject to certain finiteness
conditions) is equivalent to Rep G or Rep (G, ε).
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Non-symmetric ribbon categories

6=

cX,Y 6= c−1Y,X

X Y X Y

Drinfel’d-Jimbo quantum groups: Uqg Hopf algebra

I For q not a root of 1: Rep Uqg is semisimple with fusion
rules of g

I For q a root of 1: Rep Uqg is not semisimple, but we can
extract a semisimple category (Rep Uqg)ss using tilting
modules (Andersen, ’92).

Define Rep SO(N)q as the tensor subcategory of
Rep Uqso(N) or Rep Uqso(N)ss spanned by simples with
integer highest weights (no spin reps).
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The Grothendieck ring and fusion rules

The Grothendieck ring of a (semisimple) ribbon category C is
generated by simple isotypes λ ∈ Γ, with relations

λ⊗ µ =
∑

ν∈Γ

Nν
λ,µν

where Nν
λ,µ is the multiplicity of ν in λ⊗ µ. Gr(C) is a Z-based

ring, equipped with simple elements as a Z-basis.

Γ(Rep Z2) = {1,−1}
Gr(Rep Z2) ∼= Z[Z2] ∼= Z[x]/(x2 − 1).

Up to monoidal equivalence, there are 2 ribbon categories with
Gr(C) ∼= Gr(Rep Z2). Up to ribbon equivalence, there are 8.
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SO(N) fusion rules via highest weight
Finite dim irreps of SO(N) are parametrized by their highest
weight λ = (λ1, . . . , λn) ∈ Zn, which must belong to the
dominant Weyl chamber:

Γ(SO(2n+ 1)) = {λ | λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0}
Γ(SO(2n)) = {λ | λ1 ≥ · · · ≥ λn−1 ≥ |λn| ≥ 0}.

The fusion rules are “generalized LR coefficients” and are given
by classical formulas (e.g. Steinberg’s rule). They define
Gr(SO(N)).

Γ(SO(5))

(λ1, λ2) ∈ Z2, λ1 ≥ λ2 ≥ 0

. . .
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There are also Z-based quotients of Gr(SO(N)) with only
finitely many simples, corresponding to highest weights
properly contained in a shifted Weyl alcove.

Γ(SO(5)−O(6))

(λ1, λ2) ∈ Z2, λ1 ≥ λ2 ≥ 0,

λ1 + λ2 ≤ 6
. . .

−ρ
These define fusion rings of type SO(N)−O(K) and
SO(2n+ 1)− Sp(2k). There is a quotient map

Gr(SO(N))→ Gr(SO(N)−G)

which takes a simple element to ± a simple element, or 0. Far
from the new bounding hyperplane, the fusion rules are the
same as for Gr(SO(N)).
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Young diagrams

[5, 42, 13] =(5, 4, 4, 1, 1, 1, 0, . . . , 0) =

+
[3, 22]+ =(3, 2, 2) =

–
[3, 22]− =(3, 2,−2) =

Fundamental fusion rule:
The rule for tensoring with X ∼= [1] is adding and removing a
box.

X ⊗ ∼= ⊕ ⊕ ⊕ ⊕ + ⊕ –

15 / 37



The braid element cX,X
SO(N)-type categories are tensor generated by a single simple
X ∼= [1] (for N = 3, N ≥ 5). It is self-dual and its tensor square
splits into three simples:

X⊗2 ∼= 1⊕ [12]⊕ [2].

= X

1

cX,X =

Therefore cX,X ∈ EndC(X
⊗2) has three eigenvalues. For a fixed

category C, we will always denote

q := eigenvalue of cX,X on [2].

The classification strategy is to show that the fusion rules and q
determine the category C.
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Theorem (Tuba-Wenzl ’03, Morrison-Peters-Snyder ’11)

Let X be a symmetrically self-dual simple object in a ribbon
category such that X⊗2 splits into three simples. Then there is
r ∈ C× such that

= r , = r−1 .

With q as above, cX,X satisfies either the Dubrovnik relation:

− = (q − q−1)
(
−

)

or Kauffman relation:

+ = (q + q−1)
(

+
)

Hence cX,X has eigenvalues (q,−q−1, r−1) or (q, q−1, r−1).
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Classification for Lie type categories
acts by (q,−q−1)

X ⊗X ∼=[2]⊕ [12].
Theorem (Kazhdan-Wenzl, ’93)

Any tensor category with SL(N) fusion rules is a twist of
Rep SL(N)q by a 3-cocycle of ZN . Ribbon categories with the
fusion rules of SL(N) are determined by q and equivalent to
Rep SL(N)q.

acts by (q,±q−1,±qm)

X ⊗X ∼=[2]⊕ [12]⊕ 1.
Theorem (Tuba-Wenzl, ’03)

Ribbon categories with the fusion rules of O(N) (resp. Sp(N))
are determined by the eigenvalues of cX,X and are equivalent to
a twist of Rep O(N)q (resp. Rep Sp(N)q) by a 3-cocycle of
Z2.
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Our main result for SO(N) categories
Let N ≥ 5 or N = 3.

Theorem (C)

Non-symmetric ribbon categories with the fusion rules of
SO(N) are determined by the eigenvalues of cX,X . Any ribbon
category with SO(2n+ 1) fusion rules and braid eigenvalue q is
equivalent to Rep SOq(2n+ 1). For SO(2n) every ribbon
category is equivalent to a twist of Rep SOq(2n) by a 3-cocycle
of Z2.

I Applies to SO(N)−O(K) and SO(2n+ 1)− Sp(K) rules

I For SO(2n+ 1), the braid eigenvalues must be
(q,−q−1, q−2n) and two categories with q, q′ are monoidally
equivalent iff q′ ∈ {q±1}.

I For SO(2n) there are both Dubrovnik and Kauffman cats
and two Dubrovnik cats with q, q′ are monoidally
equivalent iff q′ ∈ {±q±1}.
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Proof of SO(2n + 1) classification

Proof.
Classically O(2n+ 1) ∼= SO(2n+ 1)× Z2. Hence if C has
SO(2n+ 1) fusion rules, then

C �Rep Z2

has O(2n+ 1) fusion rules, so by Tuba-Wenzl it is determined
by the eigenvalues of the tensor generator X �−1. These
eigenvalues are the same as the braid eigenvalues for X. Since C
can be recovered from C �Rep Z2, C is also determined by the
eigenvalues of X.

I The explicit form of the eigenvalues (q,−q−1, q−2n) can be
deduced by looking at the q-dim and twist of 1�−1

I Two SO(2n+ 1) categories with q′ = −q and are not
monoidally equivalent, in contrast to O(2n+ 1).

I There is no ε = −1 family of SO(2n+ 1) categories.
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Monoidal algebras

Suppose C is a semisimple tensor category. The monoidal
algebra generated by X is the strict monoidal category 〈X〉
with objects

1, X,X⊗2, . . .

and hom-spaces coming from C.
Theorem (Kazhdan-Wenzl, Tuba-Wenzl)

If X is a tensor generator of C then C can be reconstructed from
〈X〉 by taking the idempotent completion and adding direct
sums.
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The diagonal subcategory

The diagonal of C is the monoidal subcategory ∆〈X〉 of 〈X〉
obtained by setting

Hom∆〈X〉(X
⊗j , X⊗k) =

{
End(X⊗k) if j = k

0 if j 6= k

Theorem (Tuba-Wenzl, C)

Suppose C and C′ are Z2-graded and tensor generated by X and
Y . Then ∆〈X〉 is isomorphic to ∆〈Y 〉 if and only if C′ is
monoidally equivalent to a twist of C by a 3-cocycle of Z2.

Corollary

A Z2-graded category C is determined by its diagonal ∆〈X〉 and
a sign (choice of 3-cocycle class).
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The cocycle construction

Any ribbon category has a mirror (swap braid with its inverse).
The mirror category has the same fusion rules.

If C is also Z2-graded then there are several other modifications
that don’t change the fusion rules.

I Twist the associator by a 3-cocycle ω ∈ Z3(Z2,C×)

I Twist the braiding by an abelian cocycle given by
a : Z2 × Z2 → C× compatible with ω

I Change the spherical structure with a character of Z2

Non-trivial ω switches between Dubrovnik and Kauffman
categories.

For C singly-generated there is a unique spherical structure so
that every self-dual object is symmetrically self-dual.
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Data of the diagonal subcategory:

I The semisimple algebras End(X⊗k), k ≥ 0.

I Bilinear maps

EndC(X
⊗k)× EndC(X

⊗l)→ EndC(X
⊗k+l)

(f, g) 7→ f ⊗ g

An isomorphism of diagonals of C and C′ is a family {Φk} of
algebra isomorphisms

Φk : EndC(X
⊗k)→ EndC′(Y

⊗k)

compatible with tensor products.
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Strategy for braided SO(2n) classification

Lemma
If C is additionally braided then the tensor product maps are
determined by the braiding and the inclusions

. . .
−⊗1−−−→ EndC(X

⊗k)
−⊗1−−−→ EndC(X

⊗k+1)
−⊗1−−−→ . . .

f 7−→ f

Proof.

f g

X⊗j X⊗k

f

g

X⊗j X⊗k

=

braid

g ⊗ 1⊗j

braid

f ⊗ 1⊗k
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The Bratteli diagram
The Bratteli diagram for the inclusions of semisimple algebras

. . .
−⊗1−−−→ EndC(X

⊗k)
−⊗1−−−→ EndC(X

⊗k+1)
−⊗1−−−→ . . .

is the same as the fusion graph for tensoring with X ∼= [1].
1

1

+ −

1
+ −

Bratteli diagram for SO(6) up to level 4.
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Path idempotents and path bases
Since the Bratteli diagram is multiplicity free we can define a
complete set of minimal idempotents for End(X⊗k) indexed by
paths of length k through the Bratteli diagram:

pS : S = 1→ S(1)→ S(2)→ · · · → S(k)

I pS has isotype S(k)

I They are compatible with the inclusions −⊗ 1:

pS ⊗ 1 =
∑

λ

pS→λ

A simple module V λ for End(X⊗k) has basis vectors

{vS : S = 1→ S(1)→ · · · → S(k − 1)→ λ}

which are uniquely defined up to scalars by

pSvT = δS,T vT .
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The braid elements act locally on a path basis, i.e. if 1 ≤ i < k
then ci ∈ End(X⊗k) and

civS ∈ span{vT | T only differs from S at level i }

ci−→
∑
T
(ci)T,Si

i− 1

i+ 1

vS vT

Our goal is to compute these matrix entries. The diagonal
entries are independent of a choice of path basis, while the
off-diagonal entries depend on the scaling.
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Full twists and Jucys-Murphy elements

The full twist ∆2
k is defined in

End(X⊗k) using the braiding.
It is central in End(X⊗k). ∆2

4 =

The Jucys-Murphy elements are
defined by

Jk = ∆2
k(∆

−2
k−1⊗1) ∈ End(X⊗k).

J4 =

Lemma
The Jucys-Murphy elements act diagonally in any path basis.
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2-level path spaces W λ
µ

Suppose µ and λ are two levels apart.

+

+

λ

µ

+

ck−1 has eigenvalues (q,−q−1)

+ ⊂ ⊗ , ⊗

ck−1 has eigenvalue − q−1

+ ⊂ ⊗

Let
W λ
µ = span{wS : S is a path from µ→ λ}.

It supports an action by Jk, Jk−1 ⊗ 1 and ck−1. The fusion rules
tell us the eigenvalues of ck−1.
If λ 6= µ then dimW λ

µ ≤ 2.
30 / 37



Eigenvalues of JM elements

X⊗k−2X X X⊗k−2X X

=

ck−1Jk−1ck−1 = Jk (AB2)

One can write down all 1 and 2-dim diagonalizable matrices
which satisfy the Dubrovnik relation, (AB2), and the fact
∆2
k = JkJk−1 is central. (c.f. Ariki-Koike ’94).

Corollary

The eigenvalues of Jk are determined by the eigenvalues of ck−1

and Jk−1.

(∆2
k)S,S = rk−|λ|

∑

b∈λ
q2cn(b).
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Restriction of parameters

+

+

(q2)5 (q2)−2

hooks tell us q2 is not an lth root of 1

for l < largest hook size

+

+

+

λ, µ = [1n]+

tells us r = q2n−1
λ = [K − 1, 1], µ = [K]

tells us r = ±q−(K−1)

SO(2n)−O(K)

λ1 + λ2 ≤ K

Theorem
If C is not a fusion category then q is not a root of 1. If C is a
fusion category then q2 is a primitive 2n+K − 2-th root of 1.
In any case r = q2n−1.
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Uniqueness of braid representations
On the “new stuff” we can scale the path basis so ck−1 has the
matrix

ck−1 7→




qd

[d]q
1− 1

[d]2q

1 q−d

[−d]q


 .

On the “old stuff”, i.e. W λ
λ , we can scale the path basis so that

ek−1 = has the matrix

ek−1 7→
1

dimC λ




dimC ν1 . . . dimC νs
...

...
dimC ν1 . . . dimC νs




λ

λ

ν1 ν2 . . . νs

Methods of (Leduc-Ram, ’97) can be used to show the matrix
entries for ck−1 are determined by ek−1 and JM eigenvalues.

Theorem
The q-dims of every simple object can be expressed as a rational
function of q.
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Proof of SO(2n) classification theorem

Proof.
Suppose C, C′ have the same fusion rules and are both
Dubrovnik with eigenvalues (q,−q−1, q2n−1). Using uniqueness
of braid representations we can construct matrix units in
End(X⊗k) (resp. End(Y ⊗k)) which are compatible with
inclusions and so the braids have the specified matrices.

Then we get algebra isomorphisms End(X⊗k)→ End(Y ⊗k)
sending matrix units to matrix units. This is compatible with
inclusions and braiding so is an isomorphism of diagonals.

By diagonal reconstruction, C and C′ differ by at most a
3-cocycle twist. However they are both Dubrovnik so they are
actually equivalent.
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Open problems

I Description of planar algebra for SO(N) type categories

I Auto-equivalences of SO(N) type categories (Edie-Michell
’20)

I Other classification problems: symmetric cases, SO(4),
K ≤ 2, so(N), exotic Lie groups

I Computational complexity of braid representations
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Thanks for listening!
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