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Learning
Today’s Answer: Learning is the process of identifying some unknown (or
hidden information).

???
Choose
inputs

Read
outputs
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Black boxes/oracles

The hidden information is encoded in some transformation (called the
black box or oracle) which takes some input and transforms it into the
output, depending on the hidden information.
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Warmup for quantum mechanics
For example suppose some mystery animal is in a black box. We know it’s
either a cat, a rat or a bat. To find out what creature we have we’re
allowed to dangle some food in and see if it gets eaten.

For example we know cats and rats don’t like fruit, so if we dangle some
fruit and it gets eaten then we have a bat.

⇒ BAT!
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A better example

Consider a “guess the number” game where your friend thinks of a
number between 1 and N. You’re allowed to guess any number between 1
and N and your friend must answer “higher”, “lower” or “equal”. You
want to identify the number with as few questions as possible.

Note that to formulate the question properly you should specify the
distribution your friend uses to pick a number from 1 to N (we’ll always
assume uniform sampling!)
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Query complexity

We measure the efficacy of an algorithm by the number of queries (=
number of times the oracle is questioned).

An upper bound for query complexity means that you have some
algorithm to solve the learning problem. Eg you can think of an algorithm
for “guess the number” that uses log2(N) queries.

A lower bound for query complexity means that you can prove some
number of queries are required in order to learn the information. For
instance in “guess the number” one can show that log2(N) queries are
required (in the worst case) to learn the hidden number.
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Computation

What is a computer?

Today’s Answer: A computer is described by a state that undergoes
certain changes until some part of that state is read by a user.
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To describe a quantum computer we must specify what we mean by state
of the computer, the allowable changes (or transformations), and what it
means for a user to read a state. The postulates of quantum mechanics
give us this.
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All a mathematician needs to know about quantum
computers.

Postulate 1: states

A state of a quantum computer is a unit vector in a finite dimensional
Hilbert space.
The state space of a composite quantum system is the tensor product of
the state spaces of the component systems.

Remarks

For quantum computation we assume all state spaces are finite
dimensional! So a Hilbert space = C-vector space w/Hermitian inner
product.

Dirac “bra-ket” notation: a vector in a state-space H is denoted
|v〉 ∈ H and called a “ket”. The inner product of two states |v〉 and
|w〉 is denoted 〈v |w〉. The symbol 〈v | is called a “bra” and denotes
the linear transformation H → C which sends |w〉 to 〈v |w〉.
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Postulate 1: Examples

For example a unit vector in C2 is called a qubit. We usually write a
standard basis of C2 as |0〉 and |1〉. So a qubit is a vector

|ψ〉 = α|0〉+ β|1〉

where α, β ∈ C such that |α|2 + |β|2 = 1.

A two qubit system has state space C2 ⊗ C2.

A three k-it system has state space Ck ⊗ Ck ⊗ Ck .
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Unitary evolution

Postulate 2: Evolution of states

A quantum computer must transform a state by a unitary operator.

Remarks

A unitary operator is a linear transformation U : Cd → Cd which preserves
the inner product:

〈Uv |Uw〉 = 〈u|v〉.

In other words UU∗ = U∗U = I (where U∗ is the adjoint operator,
corresponds to conjugate transpose of a matrix).
Unitaries are reversible!! (Compare with the classical operation OR!)
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Examples

Let X =

(
0 1
1 0

)
. Then X operates on C2, ie on qubits. Recall that the

standard basis is denoted {|0〉, |1〉} so X sends 0 to 1 and 1 to 0. X is
called a NOT gate.

Let C be the unitary operator on C2 → C2 defined on basis elements by

C |00〉 = |00〉
C |01〉 = |01〉
C |10〉 = |11〉
C |11〉 = |10〉

C is called a CONTROLLED-NOT gate.
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Quantum circuit diagrams.

Idea: represent unitary operators by boxes, input and output states as
wires.
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Measurement

Postulate 3: Measurement

A quantum measurement of a state in Cd is described by a choice of
orthonormal basis for Cd , {|µ1〉, . . . , |µd〉}. If a quantum system is in a
state |ψ〉 ∈ Cd and a user performs the measurement described by the
ONB above, then the outcome is some number i ∈ {1, . . . , d} with
probability

P(i |ψ) = |〈ψ|µi 〉|2.

Remarks

Note: since the measurement vectors form an ONB, we have∑
i P(i |ψ) = 〈ψ|ψ〉 = 1 (which is good).
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Example

Consider state space C2 and a system in state |−〉 := 1√
2

(|0〉 − |1〉). Use

measurement basis |0〉, |1〉 (corresponding to outcomes 0 and 1).

P(0|−) = |〈0|−〉|2 = 1/2

and similarly
P(1|−) = 1/2.
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A quantum black box (or oracle) is some unknown unitary operation,
sampled uniformly from some finite set of unitary operations U1, . . . ,Un

on some state space Cd .

A quantum learning algorithm consists of a choice of state, a choice of
unitary operators (some of which involve the black box), and a choice of
measurement. The goal is to determine which hidden unitary you have
access to.

The number of times you use the unknown operation is the number of
queries used by the algorithm.
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Classical to quantum

Question: How do you turn a classical problem into a quantum one?

Answer: Linearize!

Classical data becomes a labeling set for some orthonormal vectors in a
vector space. Reversible classical operations are replaced by permutation
matrices, which are unitary.

{0, 1} → {|0〉, |1〉} ⊂ C2
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Grover search

Consider a variant of “guess the number”: your friend picks a number
between 1 and N. You’re allowed to ask: “is your number equal to i?”
and your friend says “0” (for no) or “1” (for yes).

You can always find the number with N − 1 queries, and in the worst case
you also need N − 1 queries. Asymptotically the query complexity of this
problem is Θ(N).
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Quantum version

To feed inputs into a quantum oracle we use a vector space CN spanned
by |0〉, |1〉, . . . |N〉.

To encode outputs we need another system which holds a single bit of
information, or a qubit with state space C2 spanned by |0〉, |1〉.

Using Postulate 2 our total system is the tensor product CN ⊗ C2. The
first tensor factor is called the input register and the second the
response register.
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The Grover oracles

For each i ∈ {1, . . . ,N} there is a separate oracle. The ith one Oi acts on
basis states by

Oi |j , b〉 =

{
|j , b〉 if j 6= i

|j , b + 1〉 if j = i

Note: + denotes addition mod 2. Oi is a unitary operator (it is a
permutation matrix.)
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Lov Grover, 1996

Theorem. There exists a quantum algorithm to identify the hidden
oracle with success probability > .95 with O(

√
N) queries.

More precisely we have that for N sufficiently large, there is an algorithm
using π

4

√
N queries which succeeds with probability > .95.

By repeating the algorithm you can get the error probability to decrease
exponentially fast in the number of repeats (some type of Chernoff bound).
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Proof.

First we we can diagonalize the oracles.

Oi |j ,−〉 = Oi

(
1√
2

(|j , 0〉 − |j , 1〉
)

= (−1)δi,j |j ,−〉.

Focus just on the subspace with a |−〉 in the response register, spanned by
|0,−〉, . . . , |N,−〉.

The operator Oi is orthogonal reflection in the hyperplane orthogonal to
|i ,−〉!

It takes |i ,−〉 to −|i ,−〉 and fixes everything orthogonal to |i ,−〉.
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Our input state will be

|η〉 :=
1√
N

n∑
j=1

|j ,−〉.

Goal: Use the oracle Oi to rotate this state towards the state |i ,−〉 and
then use the basis vectors |j ,−〉 for a measurement. The closer we get the
state to |i ,−〉, the better our success probability: if our final state is |ψ〉
then probability of measuring the correct output i is |〈ψ|j〉|2.
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After one oracle call

Note sin Θ = 1√
N

. We need to get this closer to |i〉!
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How to do this? Use the unitary operator
R := −(reflection about hyperplane orthogonal to |η〉). In our 2d-plane
this acts by reflection about |η〉!

Composition of these two reflections yields rotation by 2Θ towards |i〉!
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How many such rotations should we perform?

For N large, Θ ≈ sin Θ = 1√
N

and each time we rotate by 2Θ so it takes
π/2

2/
√
N

= π
4

√
N queries to get within an angle of Θ with |i〉 (again letting N

grow makes this angle shrink).

Once our state |ψ〉 is within an angle of Θ with |i〉 we measure using the
vectors |0〉, . . . , |N − 1〉 and the output will be the correct outcome i with
probability

|〈i |ψ〉|2 ≥ cos2(Θ).

Thus the success probability gets arbitrarily close to 1 as N grows. �
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AMAZING!

But get ready for a (possibly) more amazing speedup!
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The Bernstein-Vazirani problem

For this problem suppose your friend picks a secret binary string a ∈ Zn
2.

You are allowed to pick another binary string x ∈ Zn
2 and ask “How many

1s do the strings a and x have in common mod 2?”.

Example

Say n = 3 and your friend picks 110. If you guess 101 then they
return 1. If you guess 110 then they return 0.

Classical query complexity? Θ(n). Hint for upper bound: use the
inputs {10 . . . 0, 01 . . . 0, . . . , 00 . . . 1}.
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Quantum setup

Given two strings a, x ∈ Zn
2 let (a, x) :=

∑
i aixi mod 2 (which is equal to

the number of 1s the strings a and x have in common).

Linearize the classical problem: we have an input register C[Zn
2] with

orthonormal basis {|x〉 : x ∈ Zn
2}. (This Hilbert space is ∼= (C2)⊗n ∼= C2n).

We use a one qubit response register C2 spanned by |0〉, |1, 〉.

For each a ∈ Zn
2 we have a unitary oracle acting on C[Zn

2]⊗ C2 by

Oa|x , b〉 = |x , b + (a, x)〉.
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Ethan Bernstein and Umesh Vazirani, 1997

Theorem

There exists a quantum algorithm which identifies the unknown oracle Oa

using 1 query and achieves 100% success probability.
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Proof

Diagonalize the oracles:

Oa|x ,−〉 = (−1)(a,x)|x ,−〉.

Our input state is

|ψ〉 :=
1√
2n

∑
x∈Zn

2

|x ,−〉.

Let |ψa〉 be the result we would get from one oracle call if the mystery
oracle was Oa:

|ψa〉 = Oa|ψ〉 =
1√
N

∑
x∈Zn

2

(−1)(a,x)|x ,−〉.
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The point!

The vectors {|ψa〉 | a ∈ Zn
2} form an orthonormal set!

〈ψa|ψb〉 =
1

2n

∑
x ,y∈Zn

2

(−1)(a,x)(−1)(b,y)〈x ,−|y ,−〉

=
1

2n

∑
x∈Zn

2

(−1)(a,x)+(b,x)

=
1

2n

∑
x∈Zn

2

(−1)(a+b,x)

The last equality can be seen using the formula (a, x) =
∑

i aixi mod 2.
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Let c = a + b. Then compute

1

2n

∑
x∈Zn

2

(−1)(c,x)

.

Alternating sum: if c = 000 . . . 0 then (c , x) = 0 so the sum comes out to
1.

Otherwise we claim the sum is zero. Indeed, if a 1 appears anywhere in c ,
say in the ith position, then the map

x 7→ x + 00 . . . 1 . . . 0

(with a 1 in the ith position) is an involution of Zn
2 that reverses the sign

in our sum.

Daniel Copeland (Food for Thought UCSD Math)Improve your learning with a quantum computer! November 11, 2016 39 / 49



Let c = a + b. Then compute

1

2n

∑
x∈Zn

2

(−1)(c,x)

.

Alternating sum: if c = 000 . . . 0 then (c , x) = 0 so the sum comes out to
1.

Otherwise we claim the sum is zero. Indeed, if a 1 appears anywhere in c ,
say in the ith position, then the map

x 7→ x + 00 . . . 1 . . . 0

(with a 1 in the ith position) is an involution of Zn
2 that reverses the sign

in our sum.

Daniel Copeland (Food for Thought UCSD Math)Improve your learning with a quantum computer! November 11, 2016 39 / 49



Let c = a + b. Then compute

1

2n

∑
x∈Zn

2

(−1)(c,x)

.

Alternating sum: if c = 000 . . . 0 then (c , x) = 0 so the sum comes out to
1.

Otherwise we claim the sum is zero. Indeed, if a 1 appears anywhere in c ,
say in the ith position, then the map

x 7→ x + 00 . . . 1 . . . 0

(with a 1 in the ith position) is an involution of Zn
2 that reverses the sign

in our sum.

Daniel Copeland (Food for Thought UCSD Math)Improve your learning with a quantum computer! November 11, 2016 39 / 49



Therefore the states |ψa〉 = Oa|ψ〉 are mutually orthogonal! That means
we can use them as measurement vectors, with the vector |ψa〉
corresponding to outcome a ∈ Zn

2.

The probability of correctly measuring outcome a given that the hidden
oracle was Oa is therefore

P(a|ψa) = |〈ψa|ψa〉|2 = 1. �
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Fancier proof.
The oracles Oa in the BV problem form a representation of the group Zn

2.
The assignment a 7→ Oa is a group homomorphism

ZN
2 7→ U(C2n ⊗ C2).

Let V denote this representation. If we decompose V into irreducible
subspaces |x ,−〉 we see that 2n distinct characters appear. Therefore the
representation contains a copy of the regular representation, so there is an
(inner-product preserving!) injection

C[Zn
2] ↪→ V

of C[Zn
2]-modules.

Let |ψ〉 image of the identity e ∈ Zn
2 under this map. Then the states

Oa|ψ〉 form an orthonormal set (because their preimages do in C[Zn
2]).

Using these vectors as measurement vectors will determine the value a
with probability 1. �
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Some nonabelian problems.

Suppose G is a group of permutations acting on a set Ω. Consider the
following learning problem:

:

Your friend picks a mystery group element g ∈ G . You may choose an
element ω ∈ Ω for input, to which your friend responds with the element
g · ω.

How many guesses do you need to identify g?
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Classical query complexity

The number of classical queries required is equal to the smallest tuple
(ω1, . . . , ωt) such that the response tuple (g · ω1, . . . , g · ωt) determines g
completely.

This is the same as finding a t-tuple such that if g fixes pointwise every
element in the tuple, then g is the identity.

The minimum possible t is called the minimal base size of G and has
been studied since the 1800s!
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Base size

Some amazing things are known about the (minimal) base size b(G ) of a
permutation group G acting on n elements.

2b(G) ≤ |G | ≤ nb(G) and so

log |G |
log n ≤ b(G ) ≤ log |G |. (Historically first use of b(G )).

Kenneth Blaha 1992: the decision problem “is the base size ≤ k?” is
NP-hard!

Ákos Seress 1996: if G is primitive and solvable then b(G ) ≤ 4!
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The quantum problem

Linearize: let CΩ be the vector spaces spanned by orthonormal basis
{|ω〉 | ω ∈ Ω}.

The oracle corresponding to g is Og and acts by the permutation matrix
defined via

Og |ω〉 = |g · ω〉.

This defines a representation of V = CΩ of G called the permutation
module associated to the action of G on Ω.
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The quantum solution

Define

t := min
i
{every irreducible character of G appears in V⊗i}.

This exists by a theorem of Brauer and Burnside, using the fact that V is
a faithful representation.

Theorem (with Bucicovschi, Meyer and Pommersheim)

There exists a quantum algorithm to identify the hidden permutation
g ∈ G with success probability 100% using t queries. Furthermore, t
queries are required by any quantum algorithm to identify the permutation
with certainty.

In fact we also give the upper and lower bound for the bounded error
query complexity, which asks for the number of queries required to
identify the hidden g ∈ G with probability ≥ 2/3.
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Invariant of finite group representations

Given a faithful rep’n V of a finite group G we’re led to study

γV := min
K
{every irreducible character of G appears in ⊕K

i=0 V
⊗i}.

(This is equal to t above for permutation representations).

Very little is known about this invariant! Of course γV ≤ b(G ) when V is
a permutation module (since quantum query complexity is always ≤
classical query complexity). However γV can be efficiently calculated if
you know the character table of G and the character of V (take inner
products).

Hanspeter Kraft: using GAP computed γV for every faithful irrep of a
bunch of groups, eg every simple group of order ≤ 100000.

Daniel Copeland (Food for Thought UCSD Math)Improve your learning with a quantum computer! November 11, 2016 48 / 49



Invariant of finite group representations

Given a faithful rep’n V of a finite group G we’re led to study

γV := min
K
{every irreducible character of G appears in ⊕K

i=0 V
⊗i}.

(This is equal to t above for permutation representations).

Very little is known about this invariant! Of course γV ≤ b(G ) when V is
a permutation module (since quantum query complexity is always ≤
classical query complexity). However γV can be efficiently calculated if
you know the character table of G and the character of V (take inner
products).

Hanspeter Kraft: using GAP computed γV for every faithful irrep of a
bunch of groups, eg every simple group of order ≤ 100000.

Daniel Copeland (Food for Thought UCSD Math)Improve your learning with a quantum computer! November 11, 2016 48 / 49



Invariant of finite group representations

Given a faithful rep’n V of a finite group G we’re led to study

γV := min
K
{every irreducible character of G appears in ⊕K

i=0 V
⊗i}.

(This is equal to t above for permutation representations).

Very little is known about this invariant! Of course γV ≤ b(G ) when V is
a permutation module (since quantum query complexity is always ≤
classical query complexity). However γV can be efficiently calculated if
you know the character table of G and the character of V (take inner
products).

Hanspeter Kraft: using GAP computed γV for every faithful irrep of a
bunch of groups, eg every simple group of order ≤ 100000.

Daniel Copeland (Food for Thought UCSD Math)Improve your learning with a quantum computer! November 11, 2016 48 / 49



You can do it too!

Any comparison of b(G ) vs. γV immediately yields a comparison between
classical and quantum query complexity of some learning problem. What’s
the best speedup we can find?

Thank you!
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