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0.1 Introduction

This thesis is concerned with generalizing two classical knot invariants to links, namely
the Alexnader polynomial and the knot genus. Their extensions are the multivariable
Alexander polynomial and the Thurston norm. We assume the reader is acquainted
with the basic theory of knots and links, e.g. the existence of link diagrams, the notion
of oriented link equivalence, and Reidemeister’s theorem about Reidemeister moves. We
only consider tame knots and links, that is smoothly or PL embedded circles in S3.

The single variable Alexander polynomial is an integral Laurent polynomial that is
easily calculable from a knot or link diagram. It is one of the earliest algebraic knot
invariants, introduced by Alexander in 1928 [Ale28], in which he used the combinatorial
data of a knot diagram to extract a matrix whose determinant is a knot invariant,
the Alexander polynomial. This polynomial was quickly seen to satsify a number of
properties: for example, it is symmetric, its degree bounds the knot genus, and it is
monic when the knot is fibered.

A number of methods of calculating the Alexander polynomial were developed shortly
after Alexander’s introduction. For example, it is calculable by Seifert forms on the first
homology of Seifert surfaces or from a presentation of the knot group via the Fox cal-
culus. When extracted from a knot, the Alexander polynomial can interpreted as an
invariant of the first homology of the maximal free abelian cover of the link comple-
ment, which in this case is infinite cyclic. Finally, one of the most practical tools for
computation is that the Alexander polynomial satisfies a skein relation, and hence can
be computed inductively in a simple manner from a knot or link diagram.

Around the 1950s, Fox and others studied a refinement of the Alexander polynomial
for links, called the multivariable Alexander polynomial, which is a Laurent polynomial
in [ variables where [ is the number of components of the link. It is perhaps most
naturally understood as the generalization of the Alexander polynomial using the com-
putation via maximal free abelian covers mentioned above, and this is the approach
we describe in Chapter 2. In any case, each variable corresponds to a generator of the
first homology of the link complement, which is freely generated by oriented meridi-
ans wrapped around the boundary tori corresponding to each component of the link.
One of the primary difficulties of working with this new polynomial is that there is no
simple skein rule: indeed, application of the skein rule may increase or reduce the num-
ber of components, so there is no canonical identification of variables in each portion
of the skein step. However, Murakami has provided a system of local axioms for the
multivariable Alexander polynomial analagous to the skein rule [Mur93], but they are
considerably more complicated. This view is related to the Conway function invariant,
but we shall not discuss it here. In the absence of the skein rule, we do have a different
practical tool, which is the Fox calculus. It allows one to compute the multivariable
Alexander polynomial from a presentation of the knot group along with the information
of the orientation of the link. We discuss this in Chapter 2.

The generalization of the knot genus to links with many components is quite inter-
esting. The main issue is that one may study the complexity of surfaces which bound
any number of the components of the link. The key observation is that these surfaces
are parametrized by the second homology of the link complement, and the “link genus”
should be a function on this entire space. In the 1980s William Thurston pursued this
line of thought (actually for arbitrary compact 3-manifolds) and using the general idea
that Euler characteristic-maximizing surfaces minimize the topological complexity of
a homology class, introduced the Thurston norm, a function on the real second ho-



mology of the link complement that in general is a semi-norm defined by a (possibly
non-compact) polyhedral unit ball.

McMullen then extended the result that the degree of the Alexander polynomial
bounds the knot genus by showing that the Alexander norm on the first cohomology of
the link complement, derived from the multivariable Alexander polynomial, bounds the
Thurston norm (where the Thurston norm is transferred to cohomology via Poincaré
duality). A special case of equality occurs for fibered classes, which are cohomology
classes representable by a fibration from the link complement to S?.

The structure of this thesis is as follows: in Chapter 1 we study a particular presenta-
tion of the link group obtained from the data of a grid diagram, and the homology of the
link complement in preparation for the later chapters. Chapter 2 defines the multivari-
able Alexander polynomial and describes how the Fox calculus is used for computation.
In Chapter 3 we offer another definition of the multivariable Alexander polynomial ob-
tained from the combinatorial data of a grid diagram, and use this version to prove
the symmetry of the polynomial. Chapter 4 addresses the Thurston norm, McMullen’s
result, and the development of the theory of the Thurston norm and fibered classes.
Finally, the Epilogue presents a small view of modern link invariants that are currently
active research subjects and whose origins lie in the topics discussed in this thesis.

The content of the thesis is by no means original, but we hope that it may be a guide
or supplement for interested students. We have added considerably more explanation
to the theorems of Thurston and McMullen (Chapter 4) than is included in the original
expositions. Some theorems were hard to find in the literature so we take special care
to include complete proofs (e.g. Theorem 1.7 and Theorem 2.20).



Chapter 1

Our basic tool set

1.1 Grid diagrams and the Neuwirth presentation

Definition 1.1. An n x n grid diagram is an n x n diagram of squares filled with X’s
and O’s such that no square contains both an X and an O, and each column or row
contains a single X and a single O.

The squares of a grid diagram are given matrix coordinates, so the (4, j)th grid square
sits in the ith row from the top and the jth column from the left.

With every grid diagram G there is an associated oriented link, denoted L(G). This
is obtained by connecting the X’s and O’s of each row and column with vertical and
horizontal line segments. This produces a link projection. To designate crossings and
orientation, we require all vertical arcs to cross over horizontal arcs. The orientation is
determined by requiring that all the vertical arcs are oriented towards the (unique) O
marking in the column (see Figure 1.1 for a grid diagram of the (4,2) torus link).

Conversely, for every link there is a grid diagram representing it. This is easy to see
by starting with a link projection, approximating it with a piecewise linear projection
consisting only of horizontal and vertical segments, and then adjusting crossings locally
so that all over-strands are vertical segments.

There is an analogue of Reidemeister’s theorem, which states that two grids represent
the same link if and only if they are related by a sequence of elementary modifications

X O
X O
X O
X O
O X
O X

Figure 1.1: Grid diagram for the (4,2) torus link.
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Figure 1.2: The two types of commutation moves.

to the grid diagram. These elementary moves are commutations and stabilizations:

Definition 1.2. Suppose G is a grid diagram with two consecutive columns such the
arcs of the link in each column, when projected to the vertical grid line between the
columns, are either disjoint or one strand is properly contained in the other. Then a
grid G’ is obtained by a commutation move by swapping the X and O markings in
these two columns.

See Figure 1.2 for examples where a commutation movie is applicable. Note that the
conditions for a commutation to be applied are not satisfied if the columns have any X
or O markings in the same row. It is also clear that the type of the link is not affected
by a commutation, since case analysis shows that this move is equivalent to an isotopy
of the link or an application of the Reidemeister IT move.

Definition 1.3. Suppose G is an n x n grid diagram. The (n + 1) x (n + 1) grid
diagram G’ is a stabilization of G if G’ is obtained from G in the following way. Pick a
distinguished X or O marking of G. Remove the other X and O markings in the same
row and column as the distinguished marking, and replace this row and column by two
rows and two columns, so there are now two empty rows and two empty columns whose
intersection is 4 grid squares. There are now four ways of inserting markings into this
grid to make a new grid diagram, indexed by which of the 4 grid squares does not have
a marking. Each of these grid diagrams results in a stabilization of G.
The inverse of a stabilization move is a destabilization.

A stabilization is usually described by which marking it modifies and what direction
the empty square is. For example, Figure 1.3 shows the local modification of an X : NW
stabilization.

Definition 1.4. A cyclic permutation of a grid diagram consists of moving one of
the rows or columns on the edge of the diagram to the opposite row or column.

This corresponds to simply viewing the grid diagram on the torus in a different
manner, and clearly does not change the type of the link. It is an easy exercise to show:

Lemma 1.5. A cyclic permutation is the result of finitely many commutation, stabi-
lization and destabilization moves. O



Figure 1.3: An X : NW stabilization move.

Then we have:

Theorem 1.6. (Cromuwell)[Cro95], [OSS] Two grid diagrams represent the same link
if and only if there exists a finite sequence of commutation and (de)stabilization moves
relating the diagrams.

Therefore, one way to present a link invariant is to derive an object from the data
of a grid diagram and prove it is invariant under the elementary moves. We will do so
with the multivariable Alexander polynomial in Chapter 3.

We now turn to the Neuwirth presentation of the link group, given by the combi-
natorial data of the grid diagram. There are n generators, one for each column of the
grid diagram corresponding to a loop around the vertical strand in each given column.
There is a relation for each horizontal grid line which is the product of those generators
whose corresponding vertical strand crosses the grid line. It is clear that these are valid
relations in the link group, since the loop corresponding to each relation may be homo-
toped to a point by pulling it “behind” the grid diagram. Figure 1.4 shows the setup
for the grid diagram of the (4,2) torus link given above. The following theorem states
that no other relations are needed to describe the link group.

Theorem 1.7. Let G be an n x n grid diagram of a link L. Then m(S® — L) =
(1,...,2n|T1, ..., "n_1) where r; is the product of those x;’s for which the vertical strand
in the % column intersects the it" horizontal grid line.

Proof. We will apply the Seifert-van Kampen theorem to a suitable open cover of the
link complement. First, we construct a particular embedding of the link in R? given by
a grid diagram. The vertical strands are placed on the plane z = 1 parallel to the y-axis,
and the horizontal strands are placed on the plane z = 0 parallel to the x-axis such that
the projection of these strands onto the zy-plane give us the link projection associated
with the diagram G. To create an embedding of the link, we connect the endpoints of
horizontal and vertical strands using segments parallel to the z-axis. Clearly there is
one such segment for every appearance of an X or O in the grid diagram. For example,
Figure 1.5 shows the embedding of the (4,2) torus link using the grid diagram from
before.

Now consider the regions A = {z > 0} — L, B = {2 <1} — L and C = AN B.
Fix a basepoint p € {z = 1/2} C C that is far away from the embedded link, in the
positive quadrant of the plane. Then R? — L = AU B, and since A4, B, C are all path-
connected we may use the Seifert-van Kampen theorem to calculate 71 (R® — L, p). First,
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Figure 1.4: A Neuwirth presentation for the (4,2) torus link.

consider A. It consists of a half space missing some unknotted “arches”. It is not hard
to see this is homotopy equivalent to a bouquet of n circles. Hence its fundamental
group is freely generated by n elements, and these generators, denoted z1,...,x, are
represented by loops which wind neatly around each vertical strand of the link, with
the orientations suggested by Figure 1.4, i.e. counterclockwise in the plane. Similarly,
m1(B,p) is freely generated by elements y1, ..., y, which have representatives that wind
neatly c.c.w. around each horizontal strand of the link.

Consider now the region C'. It deformation retracts onto a plane minus 2n points (in
correspondence with the various X’s and O’s in the grid diagram). Therefore it is freely
generated by 2n elements, corresponding to loops that wind neatly around each missing
segment. However, we shall consider different generators, indexed by the grid lines of
G. Let r; be the class of a loop that wraps around all of the segments connecting X’s
and O’s in the first ¢ horizontal grid lines. Now let s; be represented by the loop that
winds neatly around the segment corresponding to the X in the j** row, approaching
between the j — 1 and j* rows. Some of these generators for the example of the torus
link are shown in Figure 1.6 (where C' has been projected onto the zy-plane). These
loops indeed generate all of m(C,p), since all of the segments corresponding to X’s
already have loops aroud them, and a loop around the a O-segment in the j** column
may be expressed as the product rjrj__llsj_l, by our choice of how the loops s; approach
the segment that they are wrapped tightly around.

We are ready to apply Seifert-van Kampen. Since there are no relations in the
fundamental groups of A and B, we have that

(ia)e(ri) = (ip)«(r) 1<i< n>

MR —L)={z1,.. .0, ¥t Yn | 4 ~
1B L) < P I a)(eg) = (im)alsy) 1<i <



Figure 1.5: Embedding of the (4,2) torus link from its grid diagram.

X

Figure 1.6: Choice of generators for m1(C, p).
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where i4 and ip are the inclusion maps of C into A and B. Clearly (i4)+«(sj) = z; and
(iB)«(sj) = y;, so we need only consider the generators x; and the relations r;. But
(iB)«(rj) = 1 since we may pull each loop underneath all the missing strands in B and
contract it to a point. On the other hand, (i4)«(r;) is represented by a loop that goes
through all the arches corresponding to the missing strands that cross the j** horizontal
grid line. Therefore, it may be written as a product of the corresponding generators of
A. Finally, (ia)«(rn) = 1 since it may be pulled above the arches and contracted to a
point. The relations we are left with are exactly those described in the statement of the
theorem, so we are done.

O

1.2 Homology of the link complement

In this section we compute the homology and cohomology of the link complement.
Let L C S2 be an [ component link, X = 53 — L the unbounded link complement and
M = S3—i(L) the (bounded) link complement where (L) denotes a small open tubular
neighborhood of L. Note that X is an open 3-manifold and M is a compact 3-manifold
whose boundary is a disjoint union of tori. Since M is a deformation retract of X
their homologies are the same. However the relative groups H.(M,0M) are different.
Whenever coefficients are omitted in the notation, we are using Z.

Proposition 1.8. The homology of X is as follows: Hyo(X) =7, H(X) = Z! Hy(X) =
71 and the remining homologies vanish.

Proof. We prove everything except that by(X) = [ — 1 where by is the second Betti
number of X (this is proved below). The neighborhood ©(L) is a disjoint union of open
solid tori, each with the homology of a circle, so

Ho(i(L)) = 7!

H(v(L)) =2

and the remaining groups are trivial. Also, the space X N (L) deformation retracts
onto a disjoint union of [ tori, so its nontrivial homology groups are:

Ho(X No(L)) =7
Hi(XN(L) = (Za7)
Hy(X ni(L)) = 7!

We apply the Mayer-Vietoris sequence for S = (L) U X:
o= Hyy1(S?) = Hy(XNo(L)) — Hy(X)®Hy(0(L)) — Hy(S?) — Hy1(XND(L)) — ...
Note that H3(X) = 0 since X is not compact, and the sequence provides the rest. [
Corollary 1.9. H'(X) = Hom(H;(X);Z) = H;(X) for each i € N.

Proof. Apply the universal coefficients theorem and note none of the homology groups
have torsion. O

11
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Figure 1.7: Orientation convention for the basis elements of H; (X — L).

We can find a simple basis for Hy(X) = Z!: for each link component L;, consider
a small loop around it and pick an orientation by the convention in Figure 1.7. The
homology class of this loop is called the ith meridian and will be denoted p;. We
claim these form a basis for H1(X). Indeed, consider the portion of the Mayer-Vietoris
sequence above:

0= Hi(XNo(L) S Hi(X) @ Hy(#(L)) = 0

where the map ¢ takes a class a to (a, —«). It is clear that Hy(X Nv(L) is generated
by {u1,-.., 1,0, .., 0} where [; is the ith longitude, i.e. a generator of Hi(v(L;)).
Clearly each p; is contractible in ©(L;). Therefore, ¢ maps the subgroup spanned by
the meridians isomorphically onto Hj(X).

The orientation convention for this basis is a “left-hand rule”: point your left-hand
thumb in the direction of the link, and the curl of your other fingers determines the
positive orientation of the meridian loop around that link (see Figure 1.7). We denote the
generator corresponding to the ¥ component by t;, so Hy(X — L) = Z = Z{ty, ..., t;).

Next let’s consider the relative homology (M,dM). Writing out the LES of the pair
(M,0M), we have

—— Hy(OM) —— Hy(M) —— Hy(M,0M) ——
e H1(8M) e H1
——— Hy(OM) —— 0

By Poincaré duality, H;(M,0M) = H'(M) and the latter group is isomorphic to H;(M).
Hence the only unknown groups in the sequence above are Ho(M) = Hi(M,90M). Note
that these must be free since every other group in the sequence is free. The only unknown
is the value by = rank(Hy(M)). But since the sequence is exact, the alternating sum of
the ranks must be 0, so adding from top to bottom (and using the fact that OM is a
disjoint union of [ tori) we get:

0:1—l+b2—l+2l—l+b2—(l—1)

so by =1 — 1, as promised in the previous proposition. We’ve proved:

12



Proposition 1.10. The relative homology of the bounded link complement (M,0M) is
Hy(M,0M) = Z!=', Hy(M,0M) = Z!, H3(M,0M) = 7 and the remaining homology
groups vanish. ]

1.3 De Rham cohomology and Poincaré duality in the link
complement

We review the connection between singular and de Rham cohomology in our low di-
mensional case without details; the reader should consult [BT82] for a full treatment.
Consider now the bounded link complement (M, 9M ). Poincaré duality gives an isomor-
phism H;(M,0M;Z) = H37*(M) where the Poincaré dual D(a) of o € H;(M,0M;7Z)
is characterized by

¢(a) = (¢ — D(a))([M])

for all ¢ € H'(M,OM;Z) considered as a function on H;(M,0M : 7). [M] denotes the
fundamental class of M and — denotes the cup product on cohomology.

Now we consider the de Rham cohomology groups, denoted Hb p(M;R). Given any
(singular) cohomology class a € H*(M;Z) we can assign a closed i-cycle w characterized

by
/w =afo)
for every (n — i)-chain o.

The de Rham theorem states that this correspondence is a ring isomorphism between
H'(M;R) equipped with the cup product and H}p(M;R) equipped with the wedge
product. Now since none of the homology groups with integral coefficients have torsion,
we have an inclusion

H'(M;Z) = Hpp(M;R)

which assigns to every integral cohomology class a unique de Rham cohomology class.

We focus our attention now on the first cohomology of M. Suppose ¢ € H'(M;Z).
We’ve seen that the oriented meridians around the boundary tori form a basis of Hy (M)
(which we denote t1,...,;) and these give us a dual basis f1,...,% of H'(M;Z). There-
fore we may write ¢ = Zizl \it; for some integer coefficients \;.

Now suppose S is a properly embedded compact oriented surface so its fundamental
class is an element of Ho(M,0M;Z). Using de Rham cohomology, the Poincaré dual
[ns] to the fundamental class of S is the unique class of a closed 1-form ng which satisfies

/i*w:/ wAng
S M

for all closed 2-forms w. Since we are working in low-dimensions, we can easily describe
a 1-form representing [ns]|. Let v(S) be a smoothly embedded tubular neighborhood of
S,sov(S) =8 x(-1,1) ={(s,r) : s € S,r € (—1,1)}. Let f(r) be a smooth bump
function with integral 1 on the interval (—1,1). We define the 1-form ng by

ns(p) = {f('r)dr if p e v(9)
0 if p ¢ v(9)

Note that the fundamental class of [S] is an integral homology class, so its Poincaré
dual is evidently also an integral class. Thus we would like to identify [g] as an element

13



of H(M;Z) by trying to evaluate [ns](c) where o € Hy(M;Z). Tt suffices to consider
the case when o is a meridian ¢;, as these form a basis of Hi(M;Z). By following the
definitions, we see

ns](t:) = / ns = algebraic intersection number of ¢; and 95
ti

where we calculated the integral by assuming ¢; intersects v(.S) as a ‘vertical fiber’, i.e.

a set of the form {(sg,7) : 7 € (—=1,1)}, so the integral of ng adds 1 to the total for

every component in the intersection. This assumption is not problematic since we may

always homotope ¢; within v(S) to have such a form. Putting everything together, we

have the following propositions:

Proposition 1.11. Suppose S is an embedded surface Poincaré dual to ¢ € H'(M).
Then for any 1-cycle vy in H;(M) we have

() = algebraic intersection number of v and 0S.

Proposition 1.12. The fundamental class of [S] is Poincaré dual to ¢ = > N\it; iff the
boundary of S wraps longitudinally around the it boundary torus \; times (where \; is
positive or negative considering orientations). L]

14



Chapter 2

The classical multivariable
Alexander polynomial

2.1 Algebraic preliminaries

Let R be a UFD and M a finitely generated R-module. A a presentation of M with n
generators and 7 relations (where possibly |r| = oco) is given by an exact sequence:

Rri>R”—>M—>O

Note that A may be written as an n X r matrix with coefficients in R. The above
sequence means M is the cokernel of the homomorphism A.

Definition 2.1. The kth elementary ideal of M, denoted Ej (M), is the ideal of R
generated by the n — k x n — k subdeterminants of A if 0 <n —k <.
If n — k <0 then we define Ex(M) = R and if n — k > r, we define Ex(M) = 0.

It appears as though the definition depends on the presentation of M. However, it
does not, so the elementary ideals are indeed module invariants.

Proposition 2.2. The kth elementary ideals are all invariant under a change of pre-
sentations for M.

Proof. [CF63], [Zas49]. The proof uses elementary linear algebra and Tietze moves. [J

Since any determinant can be written as a linear combination of subdeterminants,

we have
0=Ey(M)CEy(M)C---CE,(M)=R

Definition 2.3. The kth order of the module M, denoted Ag(M) is the ged of
Er(M) (in R*). The order of M, denoted ord(M), is the Oth order of M.

Note that the Ag(M) are defined only up to multiplication by units of R, so we
introduce the notation
A=A

to mean equality up to multiplication by a unit (or in other terms, A and A’ are
associates).

15



Example 2.4. The trivial module has the identity matrix as a presentation matrix,
so Ag(0) =1 for all k. A free module R" is presented by 0 — R™ — R"™ — 0 so a
presentation matrix is the zero matrix. Hence Ag(R") = 0 for all k.

The sequence of inclusions above give the divisibility relations:
1=A,(M) | Ap_1(M)| ... | Ag(M) = ord(M)
For PIDs the order of a finitely generated module is particularly simple:

Example 2.5. Suppose M is a finitely generated module over a PID R. Then M has
a decomposition as a direct sum of cyclic modules:

M=R/(p1)® D R/(pn)

Therefore it has a presentation R" A R™ - M where A is an n x n diagonal matrix
with entries p1,...,p,. Taking the determinant, we see ord(M) = p; - - - p,. Note that
ord(M) =0 <= rank(M) # 0, which also holds for more general rings, as we shall
see.

Later we use modules over the ring of Laurent polynomials in [ variables with integer
coefficients, denoted A;. This is isomorphic to the group ring of Z!. We record that A; is
a Noetherian UFD, and in fact many of the relevant properties of the orders are deduced
at this level of generality. Recall that for a module M over a domain R, the torsion
part of M is the submodule {m € M | 3r € R: rm = 0}. Equivalently, it is the kernel

of the map M LWer, Q(R) ® M where Q(R) is the field of fractions of R. A module
is torsion free if its torsion part is trivial.
Proposition 2.6. Let A be a Noetherian UFD and suppose

0—H —H— Hy—0

is a short exact sequence of A-modules. Then
1. Ao(H) = A¢(H1)Ap(H2)
2. If Hy has no torsion part and rank Hy = r, then

Agr(H)) ifr<d

AdlH) = {o ifr>d

Lemma 2.7. Suppose Hi and Hs have square presentation matrices Py and Py respec-
tively. Then H has a presentation matriz of the form

P1 *
0 P
where * represents some n X m matriz, and x =0 iff H = Hy & Ho.

Proof. Suppose P, and P, correspond to presentations (x1,...,x,|r1,..., ) and

(Y1, YmlS1y .-+, Sm) respectively. Then H is generated by {x1,...,Zn,¥Y1,--.,Ym}-
The relations {ri,...,r,} determine the submodule H;. The generators {yi,...,ym}
satisfy the relations {si,..., sy} only modulo Hj, which accounts for the * in the pre-
sentation matrix for H. There are no other relations, since if we are given a relation

between the generators x1,...2n, Y1, ... Ym, then we can use the matrix ( ) to reduce

*
Py
it to a relation between the generators in Hy. The final assertion is clear. O
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We prove Proposition 2.6 by using localization at prime ideals to compare factor-
izations of various orders. Briefly we recall the definition of localization. If p << R is a
prime ideal of the commutative ring R, then the localization of R at p, denoted Ry, is
the ring of fractions {¢ | a € R,t ¢ p} with the obvious multiplication. More generally,
if M is an R-module, then M, is the Ry-module M ® R,. The elements of M, may be
written as fractions {%* | ¢ ¢ p}. It is easily shown that — ® R, is an exact functor. See
[AMG69] for details.

Returning to the case where A is a Noetherian UFD, let p € A be an irreducible
element, so (p) is a prime ideal, and A(p) the corresponding localization. Note that A,
is a PID, since (up to multiplication by units) every element is of the form p" for some
non-negative integer k. We can use localization to compare orders due to the following
observation:

Lemma 2.8. Let M be a A-module. Then we may write Ap(M) = p*q where pt q iff
Ap(M ® A(y,)) = p* where M @ Ay, is considered a Agy-module.

Proof. If P is a presentation matrix for M, then P ® A, is a presentation matrix for
M @ A,) as a A-module. This is a matrix whose entries are the images of the entries
of P under the canonical homomorphism A — A(,). The geds of the various minors are
preserved under this homomorphism, which proves the claim. O

Proof of 2.6. For (1), see [Kaw90]. For (2), note that since Hs is torsion free with rank
r, we have Hy ® A,y = Afp) (since it is a torsion free module over the PID A(p), hence
free, and tensoring by Q(A) we must get Ho ® Q(A) = Q(A)").

Applying the exact functor —® A(;,) to our original sequence gives us the short exact
sequence of A,)-modules

O—>H1®A(p)—)H®A(p)—>A(p)—)O

Since A’("p) is free, this sequence splits and we arrive at

H® A(p) = (H1 X A(p)) D Azp)

Now H; & Ay is a finitely generated module over a PID so has an n x n presentation
matrix P. A presentation matrix for Afp) is given by the r X r zero matrix. By the
lemma, H ® A,y has an n +r X n +r presentation matrix A which looks like

P 0
4= (0 o)
Now if d < 7 then any n 4+ r —d X n + r — d minor contains a row of zeroes, so
Ag(H®Agy) =0. If d > 7, then the n+7 —d x n+ 1 — d subdeterminants of A are the

n — (d — r) subdeterminants of P. Applying this reasoning to each irreducible element
of A and using Lemma 2.8 completes the proof. ]

For modules over a Noetherian UFD A, the 0" order of M has a special meaning
as a second obstruction to the “vanishing” of M. In other words, if we want to detect
whether a module M is non-trivial, we may first calculate its rank. If the rank vanishes,
then the order is non-zero, and if ord(M) # 1 then we conclude the module is non-trivial.

Proposition 2.9. Let M be a non-trivial A-module. Thenord(M) # 0 <= rank(M) =
0.
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Proof. We've already noticed this when A is a PID. In general, suppose we have a

presentation A™ LA M 0. Applying the exact functor — ® Q(A) we see that
rank(M) = 0 iff A ® Q(A) is surjective. This occurs if and only if the columns of
A ® Q(A) span Q(A)™, which is equivalent to the existence of an n x n minor with
non-zero determinant. O

The ring A; of Laurent polynomials in [ variables belongs to another general class
of rings: group rings. We briefly list some important structures associated to every
(integral) group ring.

Definition 2.10. Let G be a group. The map € : Z[G| — Z given by €¢(g) = 1 for all
g € G is the augmentation map. Its kernel is the augmentation ideal, denoted ¢g.

The augmentation ideal is simply ({g — 1 | g € G}) < Z[G]. We shall require the
following facts regarding ez when F' = Z' is a free abelian group:

Proposition 2.11. Let F be a free abelian group. Then ep, considered as a Z[F|-
module, is torsion free with rank 1.

Proof. That e is torsion free is clear from the fact that it is an ideal of Z[F|, which is a
domain (it is a ring of integral Laurent polynomials). This implies its rank is non-zero.
On the other hand, its rank cannot exceed 1 since it is a submodule of Z[F], which has
rank 1. O

2.2 The Alexander invariants

The Alexander polynomial is a multivariable Laurent polynomial obtained from the
homology of the maximal free abelian cover of the link complement. Our approach,
following [McMO02] associates Alexander invariants to every free abelian cover of the link
complement. This allows us to use single-variable Laurent polynomial techniques and
will be useful in comparing the Thurston and Alexander norms later.

Let L denote an [ component link and (X, p) its (pointed) complement in S% and
G = m1(X). Suppose we are given a surjective homomorphism ¢ : G — F to a free
abelian group F = Zb. This map corresponds to a covering space 7 : Xy — X whose
group of deck transformations is F'. The covering space is characterized by 7, (71 (X)) =
ker ¢ < G. Let p =7 1(p).

Definition 2.12. [McMO02] The Alexander module is the Z[F]-module
Ay(L) = Hi(Xs,P)

where the F-action is given by its action on X by deck transformations. The Alexander
ideal is the first elementary ideal of the Alexander module:

I,(L) = Bi(Ag(L)) A ZIF]

The Alexander polynomial corresponding to ¢ is the first order of the Alexander
module, i.e.

Ay(L) = ged(Iy) € Z[F]
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Occasionally we omit reference to the link L in the notation. When ¢ is the
Hurewicz/abelianization map 71(X) — Hi(X) = m(X)/[71(X),71(X)], the corre-
sponding covering space is the maximal free abelian cover of X. We abbreviate the
above definitions in this case and write A(L), I(L) and A(L), and the maximal free
abelian cover is denoted Xo. Unless the context states otherwise, the (multivariable)
Alexander polynomial refers to A(L).

Note that the Alexander polynomial is defined only up to multiplication by units in
Z|F]. This ring may be viewed as the ring of Laurent polynomials in b variables upon
picking a basis for F =2 Zb. It is often convenient to pick ¢ : G — Z so that Ay is a
Laurent polynomial in just one variable.

It is sometimes useful (and often done in the literature) to instead consider the
absolute homology of X:

Definition 2.13. The Alexander invariant corresponding to ¢ is the module H;(Xy)
with F' acting as the group of deck transformations.

As usual, if the phrase Alexander invariant is mentioned without a homomorphism
¢, it is implicit that ¢ is the abelianization map. The Alexander polynomial is then
defined to be ord H;(X4). This is justified by the following:

Proposition 2.14. Let ¢ and (Xy,p) be as above. Then
A(L) = ord(H:(X4))

Proof. Consider the long exact sequence of homology for the pair (X4, p). By the nat-
urality of the sequence, it preserves the action by deck transformations, so it may be
considered as a sequence of ZF-modules. The non-trivial part is:

0 — H1(Xy) — H1(X4,p) — Ho(p) — 0

The reduced homology group Hy(p) is the kernel of the augmentation map € : Z[F] — Z,
which is the augmentation ideal ep. By Proposition 2.11, e is torsion free with rank 1.
Hence by Proposition 2.6,

Ao(H1(Xg)) = A1(H1(Xp, D))

This proves the claim, as the first quantity is ord(H;(X)) and the second is A(L). O

2.3 Algebraic description of the Alexander invariants

As usual, we have a covering map (X, p) — (X,p) such that 7, (71(X,p) = ker ¢. The
Alexander invariant corresponding to ¢ : G — Zb may be derived algebraically just from
the inclusion ker ¢ — G. For this reason many authors refer to the Alexander invariant
of a group, and this can be extended to the Alexander invariant of any topological space
X by setting the Alexander invariant of X to be that of its fundamental group. In
particular, one may define this invariant for any 3-manifold, not just link complements.
We will not take advantage of this level of generality but it is good to be aware of it.
For the algebraic description of the Alexander invariant corresponding to ¢, we
note that as a group H;(Xy) = ker ¢/(ker ¢)’ by the Hurewicz theorem, where we are
factoring by the commutator of ker¢. We will examine the actual map giving the
isomorphism in more detail below. Also, the group F' of deck transformations of Xy is

G/ ker ¢.
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Definition 2.15. The conjugation action of FF = G/ ker ¢ on H = ker ¢/(ker ¢)’ is
the following (left) group action: let « € ker ¢ represent [z] € H and let f € G represent
[f] € F. Then

[f]- [a] = [faf™]
We will show this action is well defined and that Hi(Xg4) = ker ¢/(ker ¢) as F-

modules. Since the conjugation action doesn’t use any topological information, we will
have shown that the Alexander invariants are algebraic invariants derived from the fun-
damental group of the link complement.

To show the conjugation action is well defined, suppose =,y € ker ¢ are congruent
modulo (ker ¢) and f,g € G are congruent modulo ker ¢. We must check that fzf~! =
gyg~! modulo (ker ¢)" (note that these elements are clearly in ker ¢ since it is a normal
subgroup). To that end, we may write y = cx and g = tf for ¢ € (ker ¢) and t € ker ¢.
Then we have:

frf~' = gyg~! mod (ker¢) <= faf gy g™ € (ker o)
— fof'tfe e € (ker ¢

= (f ) fenf a7 e Y € (Ker o)

The first term in parentheses is in (ker ¢)" since ¢ € (ker ¢)’ and the commutator sub-
group is a characteristic subgroup (preserved under automorphism). The second term
is just the commutator [fcz f~!,¢] which is also in (ker ¢)'.

Next we want to compare the action of F' on H;(Xy4) and ker ¢/(ker¢)’. In the
definition of the conjugation action, all elements are chosen from the ambient group G.
In the topological setup, G is m1(X,p) and so to establish an equivalence of the two
F-actions we translate the action of F' by deck transformations into multiplication in
m1(X,p). Concretely, a homology class o € H;(Xy) is represented by a loop v with
basepoint p (this is much of the content of the Hurewicz theorem). Thus « is the image
of v under the Hurewicz homomorphism h : 71 (X, p) — H1(Xy4). Now [7] sent into the
ambient group G = 71 (X, p) via the injection m,. On the other hand, an element f € F
is also represented by a loop [f] € 71 (X, p). Our goal is to show fi(a) = R([f][Y][f]~})
where f, is the induced map on homology, and h is shorthand for the restriction of 7!
to ker ¢ followed by h.

Let us calculate m,(f.cr). First, the class fi(a) is represented by f o, which is a
loop in X4 with basepoint f(p). We want to apply the Hurewicz map to calculate the
homology class of fo~y, but the Hurewicz map is defined only on loops with basepoint p.
Therefore, we modify fo~: if § is a path from p to f(p), then §x(fov)*4 is a loop with
basepoint p that is homologous to f o~ and now h([0x (fov)*6]) = f«(a) (here % is the
normal concatenation operation for paths and ¢ is the opposite path of §). Moving to
71(X, p) via the projection, we have 7, ([6x(foy)*d]) = [f][m(V)][f '] € ker ¢ C 71 (X, p).
Applying the Hurewicz map to both sides gives fi(a) = h([f][m«7Y][f}]) as desired.

We have proved (Cf. [Rol76], pp. 174-175):

Theorem 2.16. Suppose (X4, D) 5 (X, p) is a covering map with T (m1(X g, P)) = ker ¢
and denote F' = G/ ker ¢. Let

h: Hi(Xy) — ker ¢/ (ker ¢)'

be the inverse of the Hurewicz isomorphism h : ker ¢/(ker ¢) — H1(Xy). Then by is an
F-module isomorphism where ker ¢/ (ker @)’ is equipped with the conjugation action. [
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Qf S

1

Link A Link B

Figure 2.1: Two links with homeomorphic complements and different Alexander poly-
nomials

Corollary 2.17. The Z[Z]-module structure of the Alexander invariant corresponding
to ¢ depends only on the injection ker ¢ C w1 (X, p). O

There is a subtlety in the above statement that we will explore in the next section.
This is the fact that the orientation of a link provides us with a canonical choice of basis
of Z!, corresponding to the oriented meridians of the boundary of the link complement.
This is extra information (it is called “peripheral” data in the literature) and is not
included in the data of the fundamental group.

2.4 The choice of meridians

Here we outline an example pointed out by Rolfsen ([Rol76], pp. 195 - 196, to which we
refer the reader for details. Consider the two component links given in Figure 2.1.

Link A in Figure 2.1 is the (4,2) torus link, whose Alexander polynomial is computed
later to be 1 + t1t2 (see Example 3.5). From [Rol76], we see the Alexander polynomial
of Link B is 1 + t3t,.

On the other hand, Rolfsen shows that these two links have homeomorphic com-
plements. Therefore, by the last corollary, their Alexander invariants have the same
7Z[Z2)-module structure. However, this discrepancy is resolved by realizing that the ori-
ented meridians, providing bases for Z?, do not coincide with the induced isomorphism
of fundamental groups of the complements. This shows that the peripheral information
of the choice of meridians gives us more data than is included in the fundamental group.

For knots, this problem never arises, due to the celebrated theorem of Gordon and
Luecke which states that knots are determined by the homeomorphism type of their
complement [GL89].

2.5 Construction of infinite cyclic covers

In this section we provide a geometric construction for for infinite cyclic covers that often
allows us to compute the corresponding Alexander polynomial. This is a technique used
in the early days of the Alexander polynomial, based on Seifert surfaces. We consider
now the bounded link complement M = S3 — (L) with a choice of oriented meridians
t; circling the i boundary torus. Suppose ¢ : G = w1 (M) — Z is surjective. Then ¢
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represents a cohomology class since it factors through G/G’' = H1(M;Z). Suppose also
that S is an embedded connected compact oriented surface that is Poincaré dual to ¢.
By Proposition 1.12, the boundary of S wraps ¢(;) times longitudinally around the i**
boundary component.

The assumption that S is connected allows us to geometrically construct the cover
My — M corresponding to ¢. Let v(S) be a tubular neighborhood of S and let S* and
S~ denote the positive and negative sides of v(S) according to the orientation of S and
M, so that we have a disjoint union

v(S)=S"uSust

Now take countably many disjoint copies of M — S labelled N;. We glue these together
using by attaching v(S) to N; and N;y1 by identifying S~ and ST in each piece. The
result is a 3-manifold M equipped with an obvious covering map = : (M, p) — (M, p)
with Z as the group of deck transformations. Here we pick p € M — S and p € Ny, and
identify Z = (t) where t acts by moving N; to N;;1. We claim this covering space is just
My, the covering space corresponding to ¢.

Proposition 2.18. The space M constructed above is equal to My as a covering space.

Proof. Tt is enough to show that m,(m1(M)) = ker ¢ as this is a characterizing property
of My. Equivalently, on the level of deck transformations, we show that v € m (M, p)
lifts to a path from p to ¢ - p iff ¢() = 1. By Proposition 1.11, ¢() = 1 iff the algebraic
intersection of S and ~ is exactly 1. This is equivalent to the lift of v ending at ¢, since
this means that the lift of « passes from Ny to N1, where ¢ - p lies. O

Examples in which the Alexander polynomial are computed for some simple links by
examining these covers are given in [Rol76].

2.6 The Fox free calculus

The Fox calculus is a handy tool that lets us calculate the Alexander polynomial from
a presentation of the fundamental group of the link complement.

First we recall and fix some notation: A denotes the group ring Z[ZF]. For a
commutative ring R, R(aq,...,ar) denotes the free R-module generated by a1, ..., ag.
Let F™ denote the free group generated by n elements, typically labelled {z1,...,z,}.

Fox proved that for each 1 < ¢ < n there exists a unique map

0
cF" — ZF"
Ti
satisfying the identities:
61']'
— 5
8951- b

Ouv  Ou N ov

for any two words u,v € F".

We shall show how to compute the Alexander polynomial from a presentation of the
link group. Suppose (x1,...2zy|r1,...7y) is a presentation of 71 (X). Given a homomor-
phism ¢ : 71 (X) — Z" we may extend it to a map ¢ : Z[F"] — Z[Z"] = A, by composing
¢ with the map F™ — 71 (M) given by the presentation and extending linearly.
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Definition 2.19. The Alexander matrix corresponding to ¢ is the n x m matrix

<$ o %(m)), where the relations r; are considerd as words in F(xy,...,x,).

As usual, the Alexander matrix referenced without mention of a particular homomor-
phism means the matrix corresponding to the abelianization/Hurewicz map 71 (X) —
Hy(X) =7

Theorem 2.20. The Alexander polynomial corresponding to ¢ is given by the ged of
the n — 1 x n — 1 determinants of the Alexander matriz corresponding to ¢.

In particular, the ged of the ideal generated by the n — 1 x n — 1 determinants is
invariant of the choice of presentation used to construct the Alexander matrix. Crowell
and Fox [CF63] confine their discussion to the Alexander matrix and prove the invariance
of this gcd using Tietze moves and linear algebraic methods. Instead, we shall prove
Theorem 2.20, which will establish this invariance by the invariance of the Alexander
polynomial.

The heart of Theorem 2.20 lies in the topological interpretation of the Fox calculus,
which associates the Alexander matrix with the second CW-boundary map of a CW
complex that is built from the data of a presentation of 71 (X). Explicitly, we consider
a simplified topological space that has the same fundamental group as X (and hence
the Alexander invariants are the same). To that end, we let (W,b) be the pointed two
dimensional CW realization of 71 (X), using the presentation (x1,...zp|r1,... 7). The
0-skeleton of (W, b), denoted W9, consists of a single point {b}, the 1-skeleton, denoted
W' is a bouquet of circles corresponding to the generators {z;}, and the 2-skeleton,
denoted W2, consists of m 2—cells corresponding to the relations rj, each attached to wi
according to the word of the relation. This construction ensures that m (W) = m;(X).

Now let Wy 2, W be the free abelian cover corresponding to ¢ with group of
deck transformations m1(X)/ker¢ = Z". As a covering space, Wy has a natural CW-
decomposition composed of lifts of cells in W. By fixing a basepoint be p~ (D), a cell
in Wy consists of a choice of a cell in W that it covers, and a deck transformation that
determines the basepoint (which is the image of b under this deck transformation). This
gives the CW-chain groups a A,-module structure via the identifications:

0 ——  Co(Wy) —2Z5 (W, 2 Co(Wy) —— 0

H H H

Ar(re,oorm) =25 A, om) =55 AL(D)

The maps d; are A,-module homomorphisms, since the A, action comes from the action
of deck transformations on C;(Wy), which commutes with boundary maps.
Then we have:

Theorem 2.21 (Topological Interpretation of the Fox Calculus). (Cf. [Kaw90], [Tur00],
[Hir97]) The Alexander matriz <<z_5 o a%i(rj)) is the matriz of dy with respect to the bases

in the diagram above.

Proof. The idea of the proof is relatively simple, although the technicalities may be
confusing. Intuitively, we want to define a map F™ — C;(Wy) that coincides with ds
on the generators {r1,...,7r,}. On these generators, the boundary map ds is actually a
lifting map between W and Wy, and we will extend this lifting map to arbitrary words
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of F™. From lifting properties, it will be clear that this map shares the characterizing
properties of the Fox derivatives.

First some notational preparation. The composition F" — w1 (M) — Z" factors
through the abelianization of F™ via a map ¥ o a:

Fn % s gn

| o] (2.1)

(M) —2— 7

We label a basis {x1,...,2,} of Z™ so that a(x;) = x;. Upon applying the integral

group ring functor, we obtain a diagram containing ¢:

Qux

Z|F"] —%5 7[27) = A"

I

Z[Z7) = A,

We must compute the CW-boundary map do on the generating elements r1,...,7m,
of C3(Wy). By the identifications given above, it is clear that the boundary of the 2-cell
corresponding to a generator r; is the lift of the boundary of the 2-cell corresponding to
r; in the original CW-complex W. In general, we can compute the lift of a 1-cell of W
as follows.

Note that W' is a bouquet of n-circles, and the covering map Wy — W restricts
to a covering map on the 1-skeletons: W(; — W1 Let (Ly,bs) — (W1,b) denote the
maximal abelian cover of W!. This is a lattice on n generators. These two coverings
induce a covering map L, Iy it making the following diagram commute:

LHL>W(;

|

Wl

A lift of a word r € m(W1) = F,, is obtained by first lifting to the lattice L, and then
applying 1. Actually, we are interested in lifting at the level of 1-cells so we consider
the lifting map w1 (W1) LN Ci(Ly). As we did for C1(Wy), we can naturally identify
the 1-chain group C1(L,) with A,(z1,...,2z,) and 7 induces a map 7, on chain groups.
Then we have:

da(ri) = ne o l(1;) (2.2)
We will look at these two maps more closely. First examine the map 7y : Ay (21,...,2,) —
A (x1,...,2p). It is a Z-module homomorphism, so to understand it we need only com-

pute 1. (tx;) for t € Z™. First, by our identifications, the element tx; is the 1-cell which
is a lift of x; € m (W1) starting at the basepoint ¢. This basepoint is determined as
the endpoint of a lift of a loop 7 in 71 (W) to L, which lies in the coset a~!(t) (recall
a: F" — 7" is the abelianization map). Now the 1-cell n,(tx;) is obtained as the lift
of x; whose basepoint is the endpoint of a lift of  in the covering W 2, W. This is
determined by ¢. Therefore, by the commutativity of Diagram 2.1, n.(tz;) = (t)x;.
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Concisely, this means we can express 7, as an n X n diagonal matrix

(i
Nk = (2.3)
(08

Next, we consider the lifting map [ : F™ — A, (x1,...,x,) where we have identified
7 (W) = F" and Cy(L,) = An(x1,...,2,). Let I; be the ith component function.
Then clearly [;(x;) = 1 since l(x;) = x;. Suppose u,v € F™. Then [(uv) as a path in the
lattice L,, consists of a lift of u with basepoint p., followed by a lift of v with basepoint
a(u), since « is interpreted as the map taking loops to deck transformations. Therefore
l(uv) = l(u) +a(u)l(v). This relation descends to the components functions of /;. Hence
the components I; satsify l;(x;) = d; j and [;(uv) = l;(u) + o(u)l;(v). The map o, o B%i
also satisfies these properties; hence they agree on every element of F™ by induction.
Therefore we may write
Qg © B%i
l= : (2.4)

el
Of*oa

Finally, we combine Equations 2.2, 2.3, and 2.4 to get

W 0 52
da(rj) = 0l(rj) = : (r5)

Therefore dy has the matrix <<Z; o a%i(rj)) as desired. O

This remarkable interpretation lets us easily prove Thm 2.20 and gives us insight into
the Fox calculus. Note that the topological interpretation does not require us to start
with a topological space; all we used was a presentation of a group. So this theorem
gives a concrete bridge between purely algebraic and topological concepts.

Proof of 2.20. To determine the Alexander polynomial Ay4(L) we must consider the
A,-module Hy(Wy,p~'(b)) and calculate its first order. Fortunately, a presentation of
Hi (W, p~1(b)) is given by the CW-structure of Wy, from the long exact sequence of
the triple (W, W1,p~'(b)). Indeed, denoting the CW-chain complex of Wy by (Ci, 0;)
we have the presentation

o)) 01

Ca C1

Hy(Wy,p~'(b) —— 0

This is a presentation of abelian groups, but under the identifications given in Theorem
2.21 may also be considered an A;-module presentation. Therefore, we may use this
sequence to calculate the first order of Hy (Wi, p~1(b)). By the topological interpretation
of the Fox calculus, the map ds is represented by the (transposed) Alexander matrix in
the usual bases. Therefore the first order of Hy(Wy,p~1(b)) is given by the ged of the
n — 1 x n — 1 subdeterminants of the Alexander matrix. O
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Figure 2.2: The Hopf link.

Let h: m(X) — Z! denote the abelianization map. Then any map ¢ : 71(X) — Z"
factors through &, and the factor extends linearly to a map denoted ¢, : Z[Z!] — Z[Z"].
Clearly the Alexander matrix corresponding to ¢ is obtained by applying ¢. to the
entries of the Alexander matrix. Therefore we have:

Corollary 2.22. The Alexander ideal corresponding to ¢ may be computed from the
Alezander ideal by

1y = ¢«(1)

This reflects the naturality of the covering constructions. We remark that this rela-
tion does not extend to the level of geds, since the ged operation is not functorial. For
example, suppose ¢ : Zlanglet,to) — Z(t) takes t; and t2 to t. Then

Pged(ti — 1,60 — 1)) =¢(1) =1
whereas

ged(d(ts — 1), é(ts — 1)) = ged(t — 1t —1) =t — 1

Example 2.23. Let L be the Hopf link given in Figure 2.2. The complement of one
component is a solid torus, so the complement of the entire link is a torus. Its funda-
mental group is Z @ Z, with a presentation given by

m(S* — L) = (z,y | zyz~ 'y~ )

Note that = and y are represented by oriented meridian loops around the components
of the link. We compute the Fox derivatives of the single relation as follows:

0. 4 4. 0 o, o, _
5@y = (@) F g (yrTy ) = ey (@ ly ) = 1 - ey

where we used the identity 8%(3:*1) = —x~ !, which is easily derivable by noting a%(1) =
0 and applying the product rule. Similarly,

0 1 1
gy (ve Yy =z —ayzly!

Now we compute the Alexander polynomial using the map «a, : Z[F"] — Ay induced
by the Hurewicz homomorphism o : 71(X) — H;(X;Z) = Z%. Depending on the
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orientations of the link components and the choice of generators x and y, the map «
takes x to tfl and y to t;ﬁl. Therefore the Alexander matrix has the form:

(-t o)

In any case, the gcd of the 1 x 1 subdeterminants is 1. Therefore the Hopf link has
trivial Alexander polynomial.

The topological interpretation also gives us a very nice linear relation between the
columns of the Alexander matrix, due to the equation dj o dy = 0:

Proposition 2.24. Let C; denote the i*" column of the Alexander matriz (i.e. the
column corresponding to x;). Then

n

> (afa) —1)C;i =0

i=1

Proof. Examine the action of dj on a basis element z; € C1(W). By our identification,
the cell represented by z; corresponds to a lift of the i** circle in the 1-skeleton of W,
with basepoint b. The boundary map is the formal difference of the endpoint minus
the basepoint, which are a(z;)b and b respectively. Therefore dy(z;) = (oz;) — 1)b €
Co(Wx). Now translating the relation d; o do = 0 into matrix multiplication completes
the proof. O

Remarkably, we have derived a purely algebraic property of the Fox calculus using
topological methods. This relation is useful on many occasions when we have a pre-
sentation consisting of one less relation than generator, so that the Alexander matrix
is n x n — 1. The relation between the columns allow us to calculate the gecd of the
n—1xn—1 minors using only the determinant of a single minor. This fact is expressed
without referring to the particular minors below.

Proposition 2.25. For a link with more than one component, the Alexander ideal I is
€Ay (A).

Recall that €y, is the augmentation ideal generated by (¢; —1,...,¢ —[). Compare
[McMO02], Theorem 5.1.

Proof. The Neuwirth presentation given in Theorem 1.7 gives us a presentation of
m1(S% — L) with n generators and n — 1 relations, so the Alexander matrix is of size
n—1xn. Let M; denote the i column of the Alexander matrix and M, the determinant
of the minor obtained by removing C;. By definition A = ged(My, ..., M,). For i # j,
using the previous proposition we calculate:

(a(xj) — 1)M; = det(Cy, . .., (a(zj) = 1)Cj, ..., Cyy ..., Ch)

:det(C’l,...,—Z(a(xk)—1)Ck,...,(f’l-,...,0n)
ki
= det(Cy, ..., —(a(z) — 1)Ci,...,Chy. .., Ch)

= +det(C1,...,Cj, .., ((z) = 1)Ciy. .., Cp) = +(a(z;) — 1) M;
So we have the following relation among the minors:

M M,
==
alz;) —1 a(zj) —1
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Now for the Neuwirth presentation in particular, a(z;) is exactly ¢,(;) where a(i) com-
putes the index of the link that the loop z; wraps around. Note that every generator
t is the image under a of some x;. Furthermore, for k # j, t; — 1 and t; — 1 share no
common factors in A;. Therefore:
M.
A =gced(M;, ..., M,) = ————— Vi=1,...
gc ( 1 n) Oé(xz)—l ? 9 7n

From this equation it is clear that ey, - (A) D (M, ..., M,). On the other hand, by the
remark above, for any ¢, we have a(z;) = tj for some z; and so (t; — 1)A = M}, which
shows the reverse inclusion. O

Remark. For knots, A; = Z[t,t7!] is a PID so the Alexander ideal is simply (A).
The above argument breaks down for knots because in this case a(x;) is always a power
of t, so a(x;) — 1 is always divisible by (¢ — 1). In particular these elements are not
relatively prime.
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Chapter 3

The multivariable Alexander
polynomial via grid diagrams

Let G denote a fixed grid diagram. We discuss the calculation of the multivariable
Alexander polynomial (of a link) from a grid diagram. The multivariable Alexander
polynomial may be retrieved as the Euler characteristic of a suitable grid homology the-
ory (denoted CL(G) in [MOSTO07]). Defined in this way, the status of the polynomial
as a knot invariant follows from the invariance of the entire homology theory. Here we
instead take a more elementary approach and define the multivariable Alexander poly-
nomial solely via the grid diagram, and directly prove its invariance under commutation
and stabilization moves. Cromwell’s Theorem then asserts that it is a knot invariant.
Let us define some quantities obtained from a grid diagram.

The winding matrix W(G) is the matrix whose (i, j)-th entry is the /-component
vector

(wi(t,7), ..., wi(i,]))

where wy(i,j) is the winding number of the k-th component of the link around the
vertex corresponding to the (4, j)-th entry of the matrix. We throw out the bottom row
and right hand column in accordance with our interpretation of the grid diagram as
living on a torus. We adopt the convention that we label vertices of a grid as we label
the entries of the winding matrix, so we count rows from top to bottom starting at 1
and count columns from left to right starting at 1. The grid matrix M(G) has (i, j)-
th entry ¢~%4i, using multi-index notation. In other words, this entry is the product
t;wl(iJ) .. t;wl (ivj)'

We denote the set of O’s as O and the X’s as X. We sometimes consider these sets
as bijections between columns and rows. In this sense, we define €(G) to be the sign of
the permutation connecting O with the configuration of O’s running from the top left
corner of the grid to the bottom right corner (we call this the downwards diagonal
configuration. The quantity n; is equal to the number of vertical segments in the i-th
component of the link. Let P be the set of those vertices which are at the corner of an
X or O marking. The quantity «a; is defined to be

1
ai =g Z {winding numbers of the i-th component at the vertex p}
peEP

. Let n; denote the number of vertical strands corresponding to the i*® component of
the link L,;. Then we define:
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X X
O O
X o X
O O
Gy G2

Figure 3.1: Commutation of the first type.

Definition 3.1. The multivariable Alexander polynomial associated to a grid
diagram G of an oriented link L with [ components is the polynomial in [ variables

!
Ag(ty,....t) = e(G)det M(G) [T (1 — 1) "zt‘“*?
=1

3.1 Link invariance

We would like to show Ag is a link invariant, i.e. is independent of the choice of grid
diagram representing L. Cromwell’s Theorem asserts that it is sufficient to show Ag is
invariant under commutation and stabilization moves.

Lemma 3.2. Ag(ty,...,t;) is invariant under commutations.

Proof. We consider two cases. First, suppose a commutation is such that the vertical
portions of each link are non-overlapping (Figure 3.1). The associated matrices M(G1)
and M(G2) differ only in the middle column of the commutation. To compare deter-
minants, we subtract the left column from the middle column in M(G7) and the right
column from the middle column in M(G3). Let w; and w; denote the winding num-
bers of the respective links around the vertex lying at the SE corner of the O marking
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X X
O O
wy |y -1 w; wy— 1
X X
O O
G1 GZ

Figure 3.2: Commutation of the second type, with winding numbers indicated.

associated to L;. Then we have (in the configuration of Figure 3.1):

0 0
0 0
N T R e

e T T
0 0
0 0

where * denotes that the remaining entries are equal in both matrices. Hence we have
det M(G1) = —det M(G) Clearly the quantities a;, aj, n; and n; are unchanged, and e
changes sign, so we have Ag, = Ag,. The other configurations of X’s and O’s are very
similar.

Now suppose the commutation is such that one vertical segment is “contained” in
the other (see Figure 3.2). Again the matrices M(G;) and M(G3) differ only in the
middle column of the commutation. Now let w; and w; denote the winding numbers of
the respective links at the SW corner of the O marking associated to L;, as in Figure
3.2. We subtract the right column from the middle column in M(G;) and the left
column from the middle columin in M(G2). In general, we always subtract the column
with the shorter vertical segment from the middle segment. Now the middle columns
of each matrix have nonzero entries in the same positions, and the non-zero entries are
constant in each matrix, as in the previous case. In the case of Figure 3.2, the non-

zero entries of M(Gy) are t; it 7 — "t ™ and the non-zero entries of M(G3) are
t;wi+1t;wj+1 - tl-_w"ﬂtj_wj. Therefore:

det M(Gl) == *ti det M(GQ)
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Gl GQ

Figure 3.3: X : NW stabilization, with winding numbers indicated.

Now in the expression for Ag, the ni quantities remain the same and e switches sign
from G1 to Go. The only changes in the a; quantities occur at the corners of the X and
O marking of L; in the commutation. Thus a;(G2) = a;(G1) and a;(G2) = —14a;(G1).
Hence the —t; difference in determinants is absorbed by the chainge in ¢ and a;. For
other orientations, one may explicitly repeat the argument, or notice that the point of
the calculation is that the determinant of M(G2) is always a multiple of M(G;) by
—t;tl. The overall sign is absorbed by €, and the sign of the exponent is determined by
the orientation of the vertical strand in L;; this is exactly compensated by the change
in a;. ]

Lemma 3.3. Ap(t1,...,t) is invariant under stabilizations.

Proof. For concreteness, first consider an X : NW stabilization (Figure 3.3) where we
are stabilizing the ith component of the link, L;. In Figure 3.3 we’ve labelled the winding
numbers (with respect to L;) of some of the corners by a, b, ¢, w, and the position of the
stabilization in G2 by ¢ and j. Note that w +b —a — ¢ = 1, since all but one of these
quantities are equal, and the other differs by 1. If instead there was an O marking in
the box, the sum would be —1.

Now subtract the (j + 2)"¢ column from the (5 + 1)** column in M(Gs). The result
has only one nonzero entry in the 5 + 1 column, which is t;erl —t7", in the 7 4+ 1 row.
Clearly the corresponding minor is exactly M(G1). Therefore

det M(G) = (—1)F+DHHD (pmwtl _g=wy ot M(G))

Now calculate the change in a;:
1 1
ai(G2) — a;(G1) = §(7w—3+a+c—b) = §(8w—4) =w-—1/2

where the second equality is due to w + b — a — ¢ = 1. Finally, the additional vertical
segment in Gg is incorporated in n;(G2) = n;(G1) + 1. Substituting these calculations
into the formula for Ag, we obtain:

Ag, = €(Ga)e(Gr)(=1) (¢ —t;7) (1 — ) 't Ag,
= e(G2)e(G) (1) (¢ (t; — 1)) (1 — ;) 't Ag,
€(G2)e(Gr) (-1 Ag,
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O O
e | ®
O X ) O

x|0 - O

O ®
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O O
® X O
e x|O
e O

j>i+1 j<i1+1

Figure 3.4: Result of applying 7 to G.

Thus it remains to show €(G1)e(Ga) = (—1)"7+L. By the definition of ¢, there is
some permutations 7 of columns in (G; taking the O markings to the downwards diagonal
configuration of O’s and sgn 7 = ¢(G1). We extend 7 to a permutation 7 on the columns
of G2 by requiring 7 to fix the right column in the stabilization (between the j + 1 and
j + 2 arcs), and act as 7 on the remaining columns. Then sgn7 = sgnm = €(Gp). We
have two cases: j > i+ 1 and j < ¢ + 1 according to whether the stabilization occurs
above or below the downwards diagonal line. These cases are laid out schematically in
Figure 3.4, where we show the effect of © on G2. In the first case, j > i 4+ 1, we may
achieve a downwards diagonal configuration by successively moving the column of the
stabilization with the O marking to the left; this requires (j+ 1) — (i + 2) transpositions.
When j < i+ 1, we move this column towards the right, requiring (i + 1) — (5 + 2)
transpositions to achieve a downwards diagonal configuration. In either case, the sign
of the product of these permutations is (—1)**/*!. This shows A is invariant under an
X : NW stabilization. The other cases are omitted as they are similar, but we mention
that since we proved commutation invariance, it is only necessary to examine three other
cases; for example the other X stabilizations. ]

Therefore, by Cromwell’s Theorem, we have:

Corollary 3.4. Ap(t1,...,1) is a well defined link invariant.

3.2 Equivalence of definitions

We will now justify the nomer “Alexander polynomial” that we’ve given to this invariant
by proving that it is equal to the Alexander polynomial we’ve discussed in previous
chapters. Of course, there the Alexander polynomial was defined only up to units in A,
so this is the most we can prove. In other words, the polynomial obtained from a grid
diagram is a particular normalization of the Alexander polynomial.

The details of the proof are a bit confusing, so it may help to look at the example
following the proof to understand the steps.
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Theorem 3.5. [MOSTO07] Let G be a grid diagram for L. Let A denote the polynomial
obtained from the diagram G while Ay is the classical Alexander polynomial. Then
Ag=Ag.

Proof. The proof is a standard application of the Fox calculus via Theorem 2.20. In
the following o(k) will denote the index of the link component which is in the k"
column of the grid diagram. We use the Neuwirth presentation coming from the grid
diagram to calculate Ay, and compare the determinant of the Alexander matrix with
the determinant of the winding matrix. The Neuwirth presentation has n generators
x1,...T, corresponding to the columns of G. There are n — 1 relations ri,...,7r,_1,
where r; is the product of those x;’s for which the vertical strand in the it" column
crosses the j** horizontal grid line. These relations are particularly nice because each
generator appears at most once, with exponent 1. Explicitly, r; has the form x;, ... x;,
where each generator appears at most once in the sequence. Then we have:
iT'— Ljy oo Ly ifl‘jl:l‘i
0x; ! 0 if x; §é Tj

where the product is defined to be 1 if it is over an empty set (which happens when
xj, = x;). When we apply the abelianization map «, each z; is mapped to tflz where the
exponent is determined by the orientation convention given in Figure 1.7. We see that
x; is sent to t,(;) if the strand in the ith column points upwards, and t;lz if the strand
points downward The result of the abelianzation is the Alexander matrix, denoted A
with entries A(i, j). Consider the j*" column of A. If the strand in the j** column of the
grid diagram does not cross the i horizontal grid line, then A(i, j) = 0. Now suppose
this is not the case and k # o(j). Then the exponent of ¢; in A(7,j) is the number of
upwards strands of Ly appearing in columns with index less than j minus the number of
downwards such strands, which corresponds with —w(i 4+ 1,5+ 1). If £ = o(j) then the
exponent of t; is —w(i + 1,j + 1) = 1 depending whether the strand in the i column
is oriented upwards or downwards. In summary, we have

o Hl: t*wk(i+1,j+1)
A<Z7]) - bl ];il
o(4)

Since we need only calculate the determinant up to multiplication by units, we can

multiply each column by tcjf(lj) so that the non-zero entries correspond to the entries of

the n — 1 x n — 1 lower right minor of M(G).

Now examine the grid matrix M(G). We subtract the first column from the second,
the second from the third, and so on. The top row is all 0’s except for the first entry,
which is a 1, so we only examine the lower right n — 1 x n — 1 minor. The only non-zero
entries in each column occur where there was a vertical strand in the previous column,
and up to multiplication by a unit in A;, each of these entires share a factor of t; — 1 or
(tl-_1 —1), where i is the component on the link appearing in that vertical strand. These
are factored out of the determinant for a total factor of ((t1 — 1)™ -+ (t, — 1)™) (t5(n) —
1)~! times some unit of A; (this multiple comes from (¢;* —1) = —t~(; — 1). Note
that we only have ny(,) — 1 such factors of (¢,(,) — 1) since we have not accounted for
the strand in the last vertical column of the grid diagram.

But now we may multiply all the entries of the j** column by tfl. so that the non-
zero entries again encode the winding numbers in the exponents. In other words, the
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non-zero entries are equal to the entries of the lower right n — 1 x n — 1 minor of M(G).
The matrix derived from the Fox derivatives has zero entries in the same positions, and
now we've seen that the non-zero entries can be made to agree through multiplication
by units. Therefore, the determinants obtained from the two procedures are equivalent.

Finally, our computations for the Alexander polynomial come out to be the same
because due to the linear relation between columns of the Alexander matrix from Propo-
sition 2.24 (cf. the proof of Proposition 2.25), the Alexander polynomial is calculated
from the minor we are using by dividing the determinant by (¢,(,) — 1). This accounts
for the missing factor when we divided such elements from the matrix obtained from
M(G). O

Example 3.6. We illustrate the proof with a calculation of the Alexander polynomial
of the (4,2) torus link.

Figure 3.5 shows the calculations described in Theorem 3.5. The left column follows
the definition of the polynomial taken from the grid diagram, while the right column is
derived from the Neuwirth presentation and the Fox calculus. The resulting matrices
differ only by unit multiples in the columns (in this case, just by a factor of tfl in
the last column). Of course this doesn’t affect the unnormalized Alexander polynomial,
which we calculate by taking the determinant of either matrix in the end and dividing
by (t3 — 1). We conclude

L—tot 4yt — 71,2

A((4,2) torus link) = 1
Y —

=1+t

3.3 Symmetry of the multivariable Alexander polynomial
via grid diagrams

Let L = L; U---U L; be an oriented ! component link. The classical multivariable
Alexander polynomial is known to satisfy certain symmetries upon inverting some of
the variables, corresponding geometrically to reversing the orientation of some of the
link components. These were first explained in the multivariable case by Torres [Tor53].
We examine an important symmetry through the grid diagram approach, inspired by
material in the forthcoming book [OSS].

Theorem 3.7. Ap(t; ', ..., t; 1) = Ap(ts,... . 1)

To prove this, we modify a grid diagram G of L to obtain a grid diagram for —L two
ways:

Lemma 3.8. Let G be a grid diagram for L. Then a grid diagram for —L may be
obtained by switching all X and O markings in G. Alternately, a grid diagram for —L
may be obtained by reflecting G about the downwards diagonal.

Proof. The first statement is clear. For the second, let G’ be the grid diagram obtained
by reflecting G' about the downward diagonal, and let P’ be the link diagram obtained
from G’. If we now rotate P’ about the downward diagonal (thinking of P’ embedded in
R3), we get a new diagram of the same link, since this corresponds to an ambient isotopy.
Now this diagram is the original link diagram with the orientations reversed. O
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T1 = T4Zg

ro = X3T4T5T¢

T3 = ToX3T5T¢6

T4 = T1ToT5T¢

X440

Ts = T125

O W OO0 000

1 2 3 4 5 6

Calculate M(G): Take Fox derivatives:

1 1 1 1 1
-1 -1

1 1 1 th oty

1 1 ot !

1

1 0 1 0 T4
1

I R e T

1

1

0

0 1 T3 XI3Xx4 A3T4T5
1 T 0 o3 A2X3T5
il 0 0 T1Tx92 X1X2T5
0 0 0 = 0

=0 O O

T P S S D A
ot 7t tth1

Subtract columns from each other

. . . Abelianize and remove the last column:
and examine the lower right minor:

0 0 0 ta—1 0 00 0 11 10 1
0 0 71 et —1) (-t Y 0 0 1 7 t]ty
0 o1 Hleten 0 gla-h 0 1 ;1 0 ¢yt
-1 —1/,-1 —1 -1 _ 1,2
1 e (e 1) 0 0 ty (1=t ) 1 t71 0 0 !
1 0 0 0 1—¢;t L 1t
) : 1 0 0 0
Factor:
0 O 0 1 0
0 0 1 ' !
+175054t — 13 (-2 0 1 ' 0 ty!
L t;h 0 0 tyt
1 0 0 0 1

Figure 3.5: Two calculations of the Alexander polynomial for the (4,2) torus link.
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Proof of Theorem 3.7. Let G be an n X n grid diagram representing L. First, let G1 be
the grid diagram representing —L by switching the O and X markings. We wish to com-
pare the Alexander polynomial obtained from this diagram with the formal substitution
Ai(tfl, . ,tfl). In the calculation below we write det M(G1)(t1, . ..,%;) to emphasize
the determinant is a polynomial in these variables.

! a.(Gl)Jr"i(Gﬂ
A p(ty,... t1) = €(Gr) det M(G1) (b, ..., t0) [] (1 — ;) (EDe" ’
=1

! (G4 il
= e(G1) det M(G)(t7 ..., D [T (1= 67 )™ (=™, i(G)+ 7

o K T
= e(G)e(G) ()" Az (7.t Y

Note that the O markings of G; may be permuted to the O markings of G by applying
n row transpositions (interchanging the O’s and X’s in each column). Hence

At t) =0zt (3.1)

Now let Gy denote the grid diagram representing —L by reflecting G about the down-
wards diagonal. We calculate A_ 7 using this diagram. The reflection induces a bijection
between vertices of G and vertices of Gy, which we denote by ¢ : (i,7) — (j,i). We
claim that ¢ preserves winding numbers: that is, w;(¢(v)) = w;(v) for each vertex v
of G. To see this, we compute the winding number of v (of some L;) using a hori-
zontal ray pointing towards the left, and compare this to the winding number of ¢(v)
computed using a vertical ray pointing upwards in G3. These rays intersect the same
segments in the same orientation, hence ¢ preserves the winding numbers. Moreover,
when calculating determinants, the sign of the minors of v and ¢(v) are equal. Hence
det M(G) = det M(G2), and furthermore:

Ar =e(G)e(G2)A 7

However, if we may permute the O markings of G to the downwards diagonal configura-
tion using IV column transpositions, then we may also permute the O markings of G5 to
the downwards diagonal configuration using N row transpositions. Hence Ar = A .
Comparing with Equation 3.1 gives us the desired equality. O

From the proof we also see that

Corollary 3.9. Ay does not detect the overall orientation of L.
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Chapter 4

The Thurston norm

The Thurston norm is a function on the second (real) homology of a 3-manifold that
enjoys several nice algebraic properties (which, although they are not enough to guar-
antee it is a norm, makes it a semi-norm). It measures the complexity of an embedded
oriented surface representing a given homology class. Oriented surfaces are determined
by their genus, so this notion of complexity is essentially a “minimal genus” function,
i.e. it takes a homology class and returns the minimal genus of a surface representing
it. We will see that the semi-norm vanishes exactly on the subspace spanned by integral
classes represented by surfaces of non-negative Euler characteristic. Furthermore, the
unit ball is seen to be a (possibly non-compact) polyhedron defined by finitely many
linear equalities. The Thurston norm is completely determined by the degenerate space
and the compact polyhedron which is the unit ball of the norm obtained by descending
to the quotient by the degenerate subspace.

Although the Thurston norm is defined for all compact oriented 3-manifolds, we are
most interested in link complements, and in this scenario the Thurston norm generalizes
the knot genus. The knot genus is the minimal genus of a Seifert surface, an embedded
oriented surface whose boundary is the given knot. The knot genus, among many
other uses, detects the unknot, a surprisingly difficult task. Alexander noticed that
the degree of the single-variable Alexander polynomial (which is the difference of the
highest and lowest degrees in a Laurent polynomial) provides a lower bound for the
knot genus. Analogously, McMullen proved that the Thurston norm is bounded below
by the Alexander norm, a number easily calculable from the multivariable Alexander
polynomial that is related to the degree. We shall discuss this below in detail.

Aside from its definition, the Thurston norm encodes some geometric information
about the link complement. For example, in section 4.4 we will see that all homology
classes which are represented as the fiber of a fibration of the link complement over S*
lie in the cone of one of a selected number of top-dimensional faces of the unit ball,
called fibered faces. Conversely, any class lying in the cone of a fibered face corresponds
to a fiber of some fibration. These “fibered classes” are interesting because it allows us
to describe the 3-manifold structure of the link complement through lower-dimensional
objects, namely the fiber surface and the circle.

We will not mention the myriad applications of the Thurston norm provided in the
last 20 years. Suffice to say, the Thurston norm is a prevalent tool in low-dimensional
topology and is routinely compared to other 3-manifold invariants which aim to measure
topological complexity.
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4.1 Existence and shape of the unit ball

Proposition 4.1. [Thu86] Let M be a compact oriented 3-manifold. Then every element
in Ho(M,0M;Z) is represented by the fundamental class of an embedded oriented surface
S. If a is divisible by k € N, then S is a union of k subsurfaces, each representing a/k.

Proof. (Cf. [Bre93|, Theorem VI.11.16.) Suppose a is an element of Ho(M,0M;7Z)
and let Dys(a) € HY(M) denote its Poincaré dual. Using either Hopf’s Theorem or
the fact that S! is a K(Z,1) space, there exists a continuous f, : M — S, unique
up to homotopy, such that f*(u) = Djys(a), where u generates H'(S'). By homotopy
invariance we may assume f, is smooth. Let € S be any regular value for f,. We
claim that N = f,!(x) works. Thus is a codimension 1 framed submanifold of an
oriented 3-manifold (the framing being given by u and f;), hence it is an embedded
oriented surface.

We must show [N] = a, where [N] is the (inclusion of the) fundamental class of N.
It suffices to show Dj/([N]) = Dps(a). Now u is the Thom class of the normal bundle
of {} in S'. The normal bundle of N is induced by f,, so its Thom class is exactly
f¥(u) = Dps(a). But the Thom class of the normal bundle of N is the Poincaré dual of
[N] as required.

For the second part, suppose a = kb € Ho(M,0M) with corresponding functions f,
and f,. Let p: S — S! be a k-fold covering map. Then

fa(w) = Duy(a) = kDy(b) = fy (ku) = (po fo)"(u)

By homotopy uniqueness, f, and p o f, are homotopic. By the covering homotopy
property, we may homotope f; so that f, = po f;. Then the k preimages z1,...,z of
z are regular values of fi. Then f;!(z) = f; '(z1) U---U f; '(x)) which is a disjoint
union of surfaces, each representing b. O

Remark. We note that we never needed dim M = 3 except when we used the word
“surface”, and in fact any codimension 1 homology class in a smooth manifold is rep-
resented by an embedded submanifold. The same is true for codimension 2, which can
be seen by the same argument using that CP*> is a K(Z,2) space and also a smooth
manifold. In general it is not true. Inquiry of this sort originated with the work of
Poincaré and later Thom, and remains interesting to this day.

For a connected surface S, let x_(S) denote the negative part of the Euler charac-

teristic:
X~ (5) = max(0, —x(5))

We sometimes call y_(S) the complexity of S. For a non-connected surface, x_(.5)
denotes the sum of the negative parts of the Euler characteristic of each connected
component. Part of Thurston’s ingenuity lies in “forgetting” low genus surfaces: note
that the surfaces for which x_(S) # —x(S) are exactly spheres and discs. Clearly
X—(S1#S52) > x—(S1) + x—(52). First we define the Thurston norm on the integer ho-
mology.

Definition 4.2. Let (M, 0M) be a compact, oriented 3-manifold. The (integral) Thurston
norm is a function xp : Ho(M,0M;7Z) — Z>( defined by

zr(a) = inf{x_(S) | S is an embedded surface representing a}
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Theorem 4.3. [Thu86] The integral Thurston norm satisfies xr(ka) = |k|lxr(a) and
zr(a+b) < zr(a) + xzp(b) for all a,b € Hoy(M,0M;Z) and k € 7Z.

Proof. First, note that zp(—a) = xp(a), since if we are given a surface representing a,
we may represent —a with the same surface but with reversed orientation. Now the
second part of the previous proposition shows zr(ka) > |k|zr(a). On the other hand,
if S represents a, then we may take |k| parallel, pairwise disjoint copies of S (with
the orientations reversed if k is negative) to represent ka, so xp(ka) < |k|zr(a), which
establishes the first claim.

Now take a,b € Ho(M,0M) and let S, and Sy be surfaces representing these classes
such that x_(S,) = zr(a) and x_(Sp) = z7(b). We may assume they intersect trans-
versely. Now S, U Sp represents the class a + b, which can be seen by considering
triangulations of either surface. We wish to perform surgery on S, U Sy, to end up with
an embedded surface representing the same homology class whose complexity is equal
to x—(S4) + x—(Sp). This is sufficient to show zr(a + b) < zr(a) + z7(b).

The intersection S, NSy consists of finitely many circles and arcs. First we eliminate
those circles which bound a disc on either surface and those arcs which are homotopic
(rel. endpoints) to a portion of a boundary component. Suppose C' C S, NS} is a circle
bounding a disc on, say, S,. If this disc contains another circle in the intersection, then
we consider that circle instead. Therefore we may suppose C' is an “innermost” circle
that bounds a disc on S,. Then we perform surgery on S, by removing a small tubular
neighborhood of C. This operation preserves the homology class of the total surface
(since we have modified it by the boundary of a cylinder). Furthermore this operation
doesn’t change x_(Sp), since it certainly cannot increase the complexity, and it cannot
decrease it because S, was chosen with minimal complexity. Repeating this step we may
assume that no component of S, NSy bounds a disc on either surface.

Now suppose I C S, NS, is homotopic rel. endpoints to a portion of the boundary
of, say, S,. This homotopy covers a disc in S,;. As before, we may assume that no other
component of S, NSy lies in this disc (it cannot contain a circle because that circle would
bound a disc, and we have eliminated these already). We modify S, to S by removing
a tubular neighborhood of I and attaching two disks parallel to the disc on S,. This
does not alter the homology class of Sp since we have modified it by the boundary of a
cylinder (modulo 9M). To check that the complexity does not increase, we note that the
modification increases the Euler characteristic by 1, and here the complexity agrees with
the negative of the Euler characteristic unless one of the components of S} is a disc. But
then the other component is clearly homeomorphic to S, and we have x_(S;) = x—(Sp)
as needed.

Thus we assume S, and S, have only essential intersections (in the sense described
above), so none of the components with positive Euler characteristic intersect (the
spheres or discs). At every component of the intersection we perform an oriented sum
operation to form a new oriented embedded surface S. The local picture for this oper-
ation is shown in Figure 4.1. The new surface represents the same homology class as
Sa U Sy since these surfaces differ by the boundary of a collection of wedges.

We have x(S) = x(Sa) + x(Sp), since the oriented sum operation involves the same
type of cutting and pasting that is required to dissemble S, U S} into a disjoint union.
Also, none of the components of S with positive Euler characteristic were involved
with in oriented sum operation, since otherwise it would have involved a component
of S, or S, which also has positive Euler characteristic, by the additivity of the Euler
characteristic with respect to the oriented sum operation. By our previous surgeries,

40



Figure 4.1: The oriented sum operation.

this is impossible. Therefore in the equation x(S) = x(Sa) + x(Sp) we may cancel from
both sides the contributions from spheres and discs to achieve the equality x_(S) =
X—=(S5a) + x—(Sh)- O

Next we extend this norm to Ha(M,0M;R). First, we define x7 on the rational
subspace Hao(M,0M;Q) by linearity on the rays. For s,t € Q and a,b € Hy(M,0M;Q)
we have

zr(sa +tb) < |s|lzr(a) + |t|xr(b)

by the previous theorem. Since the rational points are dense in Ha(M,0M;R), there is
at most one continuous extension of x7. Using the equation above it is clear that the
continuous extension exists (constructed, for example, through Cauchy sequences) and
is a non-negative convex function linear on rays through the origin. In other words,
is a semi-norm, the only condition preventing it from being a norm is that it may vanish
on some subspace. This subspace is addressed as follows:

Proposition 4.4. The semi-norm xp on Ha(M,0M;R) vanishes exactly on the sub-
space spanned by those points in the integer lattice which are represented by surfaces of
non-negative Euler characteristic.

Proof. Let K, denote the set on which zp vanishes. By linearity K is a linear subspace.
It is clear that the subspace spanned by such points is contained in K. For the converse,
suppose z7(v) = 0 for some v € Ho(M,0M;R). Then xp vanishes on the entire ray
through v, and this ray passes arbitrarily close to some integer lattice points. But if for
some s € R, the point sv is arbitrarily close to an integer lattice point z, we must have
that the integer xp(z) = 0 by continuity, which means that z is represented by a surface
of non-negative Euler characteristic. Therefore every element of K, is approximated by
such integer lattice points, so K, is contained in the closure of the linear span of those
points, and the conclusion follows. ]

Now note that by linearity and convexity, 7 is constant on cosets of K,. Therefore
xp descends to a function on Hy(M,0M;R)/K, that is convex, linear on rays, and
vanishes only at the origin. Therefore it is a norm on this space. In particular, if every
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non-trivial homology class is represented by a surface of negative Euler characteristic,
then xp is a norm on Ha(M,0M;R).

Associated to any norm or semi-norm is a unit ball, which may be any convex body
symmetric about the origin. By linearity, the unit ball describes the (semi-)norm exactly.
It turns out that the unit ball of the Thurston norm is a polyhedron with vertices in
the integer lattice. This follows from the purely formal result on norms on vector spaces
which take on integral values on a canonical integer lattice:

Theorem 4.5. [Cal07], [Thu86]. Suppose x is a norm on a finite-dimensional vector
space H, where H contains a canonical Z lattice and on this lattice x takes integral
values. Then the unit ball of x is a compact polyhedron.

When zp is not a norm, then the unit ball is not compact, but it does have the form
P x K, where P is a compact polyhedron of codimension dim K, by our observation
above that x7 descends to a norm on the cosets of K.

4.2 The Alexander norm on cohomology

The Alexander norm on H'(M) is a multivariable generalization of the degree of the
Alexander polynomial. The Alexander polynomial may be written as

A(L) = Mat®

where @ = (a1,...,q;) is a multi-index and \, € Z. Since each ¢; corresponds to
a homology class, each multi-index « may be considered as an element of H;(M;R),
namely a = aqt1 + -+ + oqty.

Definition 4.6. The Newton polytope N(Ay) is the convex hull in H;(M;R) of the
points «, ranging over the multi-indices that appear in A(L).

The Newton polytope is only defined up to translation. By Theorem 3.7 the Alexan-
der polynomial is symmetric, so the Newton polytope may be translated to be symmetric
about the origin.

We now define the Alexander norm on H'(M). Since Ho(M;Z) is free abelian, we
have by the universal coefficient theorem H'(M;Z) = Hom(Hy(M;Z),Z) = Hom(m (M), Z)
where the second equality follows from Hy(M;Z) = ab(m(M)).

Definition 4.7. The Alexander norm on H!(M;Z) or H*(M;R) is given by

[¢lla = sup ¢(a — B)
where a and 8 are multi-indices appearing in A.

The Alexander norm is clearly linear on rays and convex, making it a semi-norm. It
also takes integral values on the canonical integral lattice, so by Theorem 4.5, the unit
ball is a (possibly non-compact) polyhedron. An equivalent formulation of the norm is

[6]la = length(¢(N(A)))

In other words, the Alexander norm of a cohomology class ¢ is the length of the projec-
tion of the Newton polytope under ¢. Clearly then the unit ball of the Alexander norm
is dual to the Newton polytope with a scaling factor of 1/2.
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4.3 The Alexander norm bounds the Thurston norm

We now present McMullen’s argument that ||¢||a < zr(¢) [McM02]. We've implcitly
transferred the Thurston norm to H'(M) by Poincaré duality. The ingenuity in Mc-
Mullen’s approach is to relate the Alexander norm to the first Betti numbers of free
abelian covers corresponding to surjective homomorphisms ¢ : 71 (X) — Z. The point is
that we may use single-variable techniques to analyse this cover. As usual, we consider
a bounded link complement M with G = m;(M).

The degree of a non-zero single-variable Laurent polynomial is the difference be-
tween the highest and lowest exponents, and the degree of 0 is oc.

Definition 4.8. A cohomology class ¢ € H'(M;Z) is primitive if ¢ is surjective as a
homomorphism from Hy(M;Z) — Z.

For primitive classes, there is an associated free abelian cover X4 — X. We can
extract some information about the space X, by considering the Alexander polynomial
corresponding to ¢:

Proposition 4.9. Suppose ¢ € H'(M;Z) is a primitive class and let Xy — X be the
corresponding free abelian cover. Then

bl (X¢) = deg A¢

Proof. We are considering the Z[Z]-module H(Xy;Z). The ring A = Z[Z)] is a PID and
H,(X,) is finitely generated over A, so

Hi(Xg) =AM/ (f1) @@ A/(fn)

for some polynomials satisfying fi--- fn, = Ay (see Example 2.5). Note that deg A, =
deg f1 + - -+ 4+ deg f,. Now we calculate:

b1(Xp) = dim(H1(Xy) @ R) = (A/(f1) ®--- & A/(fn)) ®R
=@/ (fHeR)e & A/(fr)®R)
=R[Z]/(f1) & --- & R[Z]/(fn)

Since R[Z] is a field (the field of single variable Laurent polynomials over a field), the
R-vector space R[Z]/(f) has dimension deg f. Therefore

bi(Xg) =deg fi + -+ deg fr, = deg Ay
as desired. O

Theorem 4.10. ([McM02], Theorem 4.1.) Suppose ¢ is a primitive class contained in
the cone of an open face in the unit ball of the Alexander norm. Then

b1(Xp) = [[4lla +1

Proof. Consider the map ¢, : Z[Z!] — A = Z[t,t"!] which is the linear extension of
¢ : G — Z. When we apply it to the Alexander polynomial A € Z[Z!] we get the sum

P«(A) = Z )\at¢(a)
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That is, we apply ¢ to each multi-index o € Z[Z!] to find the exponents of ¢t. Therefore,
if the largest and smallest values of ¢(a)) appear in this sum (with non-zero coefficient),
we have

[¢]a = deg ¢.(A)

This occurs, for example, under our assumption that ¢ is contained in the cone of an
open face of the norm ball, since in this case the largest and smallest values of ¢(«)
appear exactly once (so they cannot be cancelled away in the sum). (Recall that ||¢|4 is
the length of the image of the Newton polytope under ¢. If ¢ is contained in the cone of
an open face of the norm ball, then the vertices of N (L) all have distinct images under
6)

Next we relate ¢.(A) and Ag. By Theorem 2.25 the Alexander ideal I = €, - (A)
and by Corollary 2.22 I, = ¢,(I). Therefore:

(Ag) = (Ip) = ¢«(I) = Pu(en, - (A)) = ((t = )¢ (A))

where we used the relation ¢.(ea,) = (t—1), which holds since if ¢ is primitive then there
are t; and t; such that ¢(t;) = t* and ¢(t;) = t* where k; and k; are relatively prime,
so then ged(tfi — 1,#% — 1) =t — 1. Therefore the polynomials Ay and (t — 1)¢.(A) are
the same up to multiplication by a unit, so their degrees agree. Finally, applying the
previous proposition yields

b1(Xy) = deg Ag = deg (t — 1)p.(A) =1+ deg ¢ (A)
so b1(Xy4) =1+ ||¢]|a by our previous comments. O

Next we would like to relate b1(X4) to the Thurston norm of ¢. To that end, we
refine the construction described in the proof of the existence of the Thurston norm to
show that for certain classes, a Thurston norm-minimizing surface may be found that
has particular constraints on its Betti numbers.

Theorem 4.11. ([McMO02], Proposition 6.1.) Let ¢ be a primitive class such that by(X)
is finite. Then there exists a Thurston norm-minimizing surface S C M Poincaré dual
to ¢ that is connected.

Proof. Let S be a surface with x_(S) = xr(¢) that minimizes by over all possible
surfaces. We want to show S is connected. If S’ is a component of S, then a tubular
neighborhood v(S’) intersects at most 2 components of M — S (since v(S") N (M — S) =
(S")T U (S")” is a decomposition into connected components). We define an oriented
graph I" whose vertices are the components of M — S and there is an edge between
components M; and Mj; if they are joined by a component of S. The edges are oriented
by the orientations of S and M (for example, an edge corresponding to a component S’
points towards the component of M containing (S’)").

There is a continuous map M i> I which sends the tubular neighborhoods of each
component of S to the edges, and the remainder of M is sent to the vertices. On the
other hand, by selecting points in each component of M — S and paths between them
intersecting every dividing component of S once, we can embed I' < M. Then the
composition

' M-—>T

is homotopy equivalent to the identity. Furthermore, there is a natural map

r st
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which sends each directed edge positively once around S!. This map is such that ¢ is
the pullback of the generator of H'(S') under the composition

M —T — 8! (4.1)

To see this, note that a generator of H'(S') (call it w) is represented by a bump 1-form
with total integral 1 in de Rham cohomology. The pullback of w to M consists of bump
1-forms on fibers of the tubular neighborhood of S. This is exactly the representative
of the Poincaré dual of S described in Section 1.3.

Next we claim that b1(I') = 1, or in other words I' contains a single cycle. Suppose
first that b1(I") > 1. To find a contradiction, pullback Equation (4.1) to the universal
cover of S' to obtain a sequence of covering spaces each with fiber Z:

M r R
S
M ¢

Sl

In fact the covering space M I M s equivalent to My — M. To check this, it is
enough to show that v € m1(M) acts as 1 € Z (considered as a deck transformation)
if and only if ¢(y) = 1, as in Proposition 2.18. By the construction of the pullback
bundle, v acts as 1 iff fogo~y acts as 1 on the covering space R = S, which occurs iff
w(fogoy)=1. But ¢ is the pullback of w under f o g, so this is equivalent to ¢(y = 1).

Now the composition I' = M — T lifts to the covering spaces to a map r— My —
I also homotopic to the identity. Therefore, applying the functor H 1(—,R) we have
by (M) > by(T). If by(T') > 1, then T has infinitely many loops (the covering action
is Z, so it can “kill” at most one cycle of T'). Then by (') = oo, which contradicts our
assumption that by (M) is finite.

We conclude that there is at most one cycle in I', so either I' is a tree, or a cycle
with trees coming off the vertices of that cycle. However, there cannot be any vertex
of degree 1, since this mean that there is a component of S lying in the boundary of
M; hence it is homologically trivial (since we are working relative to M) so we may
exclude it from S, but this contradicts the minimality of by(S). Therefore I' is a cycle
and in particular every vertex has degree 2, ignoring orientations. Continuing, note that
there cannot be a vertex with two edges pointing towards it, since this means there is
a component of M whose boundary consists of components of S, say S; and S;. This
means that [S;] + [S;] is trivial in homology, so we may exclude these from S, again
contradicting the minimality of by(.5).

Therefore I' is an oriented cycle with by(S) many vertices, so the map I' — S is a
covering map of degree by(S). But since ¢ is primitive, we must have by(S) = 1 and S
is connected. O

Now that we’ve established that there is a connected representative surface realizing
the Thurston norm, we can examine the cover My via the geometric construction de-
scribed in Section 2.5. It is clear from our earlier propositions we wish to relate by (Mg)
to the Thurston norm of ¢ since Theorem 4.10 connects by (M) with the Alexander
norm of ¢. First a general lemma.

Lemma 4.12. Suppose X = AU B is an open cover of a topological space such that
H,;(X) is generated both by H;(A) and H;(B) for some i € N. Then H;(X) is generated
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Proof. Consider the Mayer-Vietoris sequence for X = AU B. A portion of it looks like

(C,*C)

~ Hi(ANB) " gy(A) @ Hy(B)

— Hi(X) —

By assumption H;(A) = H;(B) = H;(X). Therefore, for each z € H;(X), the pair
(x,—x) € H;i(A) ® H;(B). This element is in the kernel of the sum map on the right, so
by exactness is in the image of the difference map on the left. Therefore each x € X is
the image of an element of H;(A N B) under inclusion. O

Proposition 4.13. Let ¢ be a primitive class such that bi(My) is finite. Then there
exists an embedded oriented surface S Poincaré dual to ¢ minimizing the Thurston norm
such that

bo(S) =1 (S is connected)
b1(S) = b1(My)
ba(S) =0 (S has non-empty boundary)

Proof. The previous theorem allows us to pick a connected surface S. Let My be written
as J;ez Ni where N; N Njy1 = S (see Section 2.5). Now the first homology of My is
finitely generated by assumption. Therefore, it is generated by some compact subspace
which we label Ng U ---U Ng. Now the deck transformation generating Z induces an
automorphism of H;(My) (since it is invertible) and acts via translation on the Nj’s.
Therefore the subspace N_j_1U---UN_; also generates Hy(My). By the lemma, H;(S)
generates Hi(Mgy) and consequently by (S) > bi(My).

Clearly S must have boundary, since if it did not it would not intersect any of the
meridians of the boundary tori, which implies ¢ = 0 by Proposition 1.12. 0

We are ready to prove the main result, that the Alexander norm provides a lower
bound for the Thurston norm.

Theorem 4.14. ([McM02], Theorem 1.1) Let ¢ € H*(M;R). Then ||d||a < 27(9).

Proof. First we may assume A # 0 since then the Alexander norm is 0. It also suffices
to prove the inequality for primitive classes contained in the cone of an open face of
the Alexander unit ball, since the Alexander and Thurston norms are both linear and
continuous (by linearity this proves the inequality for all classes outside a finite set of
hyperplanes, so by continuity the inequality is satisfied everywhere).

For such a class we have by (Myg) = ||¢||4 + 1 by Theorem 4.10. Let S be a Thurston
norm minimizing surface provided in the previous proposition. If S has positive Euler
characteristic (i.e. it is a disk), then these equations imply ||¢]|a =0 = x—-(S) = z7(¢),
so suppose x(5) < 0. Then we have:

z7(¢) = x—(S) = =x(5) = —=ba(S) + b1(S) — bo(S) = b1(5) — 1
> bi(My) —1=¢lla
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4.4 Fibered classes

We consider now fibrations of the link complement over S'. Any such fibration may be
associated with a cohomology class o € H'(M) which is the pullback of a generator of
H'(SY). It turns out that all such cohomology classes with unit Thurston norm belong
to certain top-dimensional faces of the Thurston unit ball, called fibered faces. On these
faces, the Alexander and Thurston norm agree.

It is useful to study knots and links whose complements admit fibrations since fibered
manifolds are described by lower dimensional submanifolds (the fibers) and have more
easily understandable topology than a generic 3-manifold.

Definition 4.15. A fibered 3-manifold M is an oriented 3-manifold with the structure
of a smooth fiber bundle over S'. Equivalently (if M is compact), M is equipped with
a surjective submersion 7 : M — S'. The inverse image of any point is a fiber of M.

Any two fibers are diffeomorphic compact oriented surfaces since locally we may
project fibers onto each other and these projections are diffeomorphisms. Furthermore,
any two fibers are homologous since they are the boundary of the inverse image of an
interval in S'. Thus it makes sense to speak of the homology class of the fiber. The
Poincaré dual of this class is an element of H'(M) and is the pullback of a generator of
H(SY).

Definition 4.16. A class ¢ € H!(M) is a fibered class if there exists a fiber bundle
7 M — S! such that ¢ is the pullback under 7 of the generator of H'(S).

Equivalently, as maps Hy (M) — H1(S') we have 7, = ¢.

Example 4.17. Consider the complement of the unknot. Then M is a solid torus
equipped with a trivial fibration D? x S' — S whose fibers are discs. The pullback of
a generator of H1(S1) is dual to a longitude of the M, which coincides with a meridian
of the boundary torus, which is a canonical generator of H'(M).

When M is the complement of a knot K that fibers over the circle such that the
corresponding cohomology class is a generator of H!(M) = Z, we say that K is a fibered
knot.

If we pullback the map 7 : M — S' of a fibered 3-manifold with fiber F' by the
universal cover R — S we obtain a covering map M — M with group of deck transfor-
mations Z. Here M is also a fiber bundle over R, which is contractible, hence M is trivial
with fiber F. The space M is constructed by gluing together countably many copies
of F' x [0,27] according to some homeomorphism h of F' (cf. Section 2.5). Note that
since M is a trivial fibration, it has the homotopy type of the fiber, and in particular,
its homology is the same as that of the fiber. The map A is understood by noting that if
we remove a fiber of M, we are left with a trivial fibration M — F = F x [0,27). Then
M can be recovered by taking the quotient of F' x [0, 27| by identifying F' x 0 and F' x 1
via the map h.

Remark. This construction is generally known as a mapping torus. It is well
known that the homeomorphism type of a mapping torus constructed from an orientation
preserving diffeomorphism h depends only on the isotopy class of h through orientation
preserving diffeomorphisms. A dependency of this type means that the topology of
a mapping torus depends only on the mapping class of h. The isotopy classes of
orientation preserving diffeomorphisms of a surface form a group called the mapping
class group that is a popular object of study (see for example [FM11]).
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Definition 4.18. The map h : ' — F' is the monodromy of the fiber bundle. The
induced map h, : H1(F) — Hy(F') is the homological monodromy.

Now suppose ¢ € H'(M) is a primitive fibered class obtained from the fiber bundle
7 : M — S' with fiber F and homological monodromy h,. We claim that the space
M obtained by gluing countably many copies of ' x [0, 27 together via h is the same
as the Z-covering space My. Since M is given by taking the product F' x [0, 27| and
identifying the fibers F' x {0} and F' x {1} via h, it is clear that the construction of My
given in Section 2.5 coincides with that of My. As a corollary, we have

Proposition 4.19. For a fibered class ¢, the cover My has the homotopy type of a fiber.

The following statements generalize the well-known fact that the Alexander polyno-
mial of a fibered knot is monic.

Proposition 4.20. Suppose M is a link complement and ¢ € H*(M;7Z) is a primitive
fibered class obtained from the fiber bundle m : M — S' with fiber F and homological
monodromy hs. Pick a basis of H'(F) and let M be the (integral) matriz of hy in this
basis. Lett be the generator of Z corresponding to the deck transformation describing hy.
Then the matriz M —tI is a presentation matriz for the Alexander invariant Hl(M¢; 7).

Proof. As we’ve seen, My is obtained by gluing together countably many copies of
F'x[0,2n] via h. Furthermore, the homology of My is just that of the fiber; in particular,
H1(Mgy; Z) is finitely generated over Z. As in Proposition 4.13, by Lemma 4.12 we have
that Hy(F;Z) generates Hi(My;Z). As a Z[t,t~'] module, Hi(My;Z) is completely
described by how ¢ acts on generators. Therefore, if a, ..., a, generate Hi(F'), then a
full set of relations is given by

tOéZ' =M (67

since h, describes how t maps the homology of one fiber into another. Consequently,
the matrix M — tI presents Hi(My;Z). O]

Corollary 4.21. The Alexander polynomial corresponding to a primitive fibered class
is monic (the coefficient of the largest power of t is a unit in 7).

Proof. Since M — tI is a square matrix, the Alexander polynomial is simply the deter-
minant, which is clearly monic. In fact this is the characteristic polynomial of M. [

We are about to relate fibered class to the Thurston norm ball. The Thurston norm
is just the minimum negative Euler characteristic over surfaces representing a given
class, unless such a class is represented by a sphere or disc. However, this irregularity
does not appear for fibered classes of link complements, due to the following observation:

Proposition 4.22. Suppose ¢ is a fibered class of a link complement M corresponding
to a fibration M — S with disk fibers. Then M is homeomorphic to a solid torus
D? x St

Proof. Tt is well known that any orientation preserving diffeomorphism of a disk is
smoothly isotopic to the identity map. Applying this to the monodromy of a fibration,
we see that M is homeomorphic to the solid torus (see the remark just before Definition
4.18). O
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The complement of a link is a solid torus if and only if the link is the (1-component)
unknot. Therefore, we exclude this trivial case in the following discussion and always
assume that the fiber of a fibration corresponding to a fibered class has non-positive
Fuler characteristic.

We now turn to the results of Thurston [Thu86] concerning fibered faces of the
Thurston unit ball. Our exposition uses material from [Thu86], [Cal07] and [CCO03].
As the treatment relies on some topological ideas outside the scope of this thesis, we
offer only sketches and citations of some statements. We must introduce several new
concepts, primarily that of a foliation, which generalizes smooth fiber bundles.

Definition 4.23. [Cal07] A (smooth codimension 1) foliation of a 3-manifold M con-
sists of an open covering by 3-balls {U;} together with smooth trivializations of each Uj;

as a product
U; = D* x [0, 1]

such that on the overlap of two charts, the sets D? x {point} agree.

Informally, this definition states that locally M may be described as a stack of planes.
A chosen plane near a point corresponds uniquely to planes in neighboring charts. A
maximal path-connected union of such planes is a leaf of the foliation. Clearly M is the
union of all the leaves. Each leaf is a (possibly non-compact) surface.

We make additional important assumptions on subsequent foliations. The first is
that each foliation is transversely oriented, meaning there is a continuous choice of
normal vector to a leaf at each point of M. Furthermore, we assume that all foliations
meet the boundary of M transversely. It is clear that these conditions are met by a
fibration corresponding to a non-zero fibered class.

Example 4.24. A smooth fibration M — S' induces a foliation whose leaves are the
preimages of points in S*.

As for fibrations, it turns out that foliations which admit compact leaves of positive
Euler characteristic must be trivial. This is a special case of a general principle called
Reeb stability.

Theorem 4.25. (Reeb Stability [CC03], [Cal07]). Suppose § is a transversely oriented
foliation of a connected oriented 3-manifold M. If one of the leaves L of § is a disk or
sphere, then M is homeomorphic to L x S' and the foliation corresponds to the foliation
induced by the trivial fibration L x S* — S*.

This means that we will consider only foliations whose compact leaves all have non-
positive Euler characteristic. Furthermore, we will be concerned only with a certain
class of foliations.

Definition 4.26. A taut foliation of M is a foliation such that for every leaf there is
a closed curve in M intersecting the leaf transversely. If M ## () then the foliation is
taut if every leaf meets either a closed transverse curve or a transverse arc connecting
components of OM.

This innocuous requirement is actually quite useful, since the existence of such trans-
verse arcs allow one to modify M in various ways along the arc. It is actually the case
(for M compact) that a taut foliation admits a single closed curve intersecting every
leaf transversely ([Cal07], Lemma 4.26). Most importantly, we have
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Proposition 4.27. A foliation corresponding to a fibration M — S is taut.

Proof. First pick a point p belonging to the fiber F' and lift a path going around S*
once to a path v starting at p. The result is an arc transverse to each fiber excluding
F. The endpoint of this path also belongs to this fiber. Now a tubular neighborhood
of F looks like F' x (—¢,€). Now if we modify v by connecting the points v N F x {—e¢}
and v N F x {e} by a straight line, we are left with a closed curve transverse to every
leaf. O

Given a foliation §, we may consider the rank-2 vector bundle of tangent planes to
the leaves. This is a special case of a (rank-2) distribution, which consists of a smooth
choice of planes in the tangent space at every point. Equivalently, a distribution is any
rank-2 smooth subbundle of the tangent bundle. A number of examples of distributions
come from non-singular 1-forms, which is a 1-form that vanishes nowhere. Then the
pointwise kernel of such a 1-form induces a distribution. The question of whether a
non-singular 1-form corresponds to a distribution induced by a foliation is answered by
the following classical theorem of Frobenius:

Theorem 4.28. (Frobenius) The distribution induced by a non-singular 1-form « cor-
responds to a foliation if and only if

aNda=0.

In particular, any closed non-singular 1-form defines a foliation on M. Conversely,
since we assume foliations are transversely oriented, it is not hard to construct a closed
1-form whose kernel determines the distribution of a given foliation using a partition
of unity. We can improve on this by noting that certain closed non-singular 1-forms
actually correspond to fibrations over S?.

Theorem 4.29. (Tischler, [Tis70]) Suppose « is an integral closed non-singular 1-form.
Then the distribution induced by o corresponds to a fibration M — S'.

Proof. (Sketch.) Fix a point p € M. Then the map
q /a mod Z
g

where 7 is a path from p to ¢ is a well-defined submersion M — S! by the assump-
tion that « is integral. Local examination shows that the distribution induced by this
fibration coincides with that of a. O

A computational tool that will aid us momentarily is the Euler class of an oriented
vector bundle.

Definition 4.30. Let 7 denote a smooth oriented vector bundle over an oriented com-
pact manifold £ — S. The Euler class e(7) is the Poincaré dual in H*(S) of the zero
locus of a generic section of F.

The above definition is to be interpreted in the following way: S is naturally em-
bedded as the zero section of E. A generic smooth section s : S — F intersects the
zero section transversely. This intersection is a submanifold of the zero section, which
we identify with S. Then the Euler class is the Poincaré dual of the fundamental class
of this submanifold.
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The Euler class is an example of a characteristic class associated to an oriented
vector bundle and as such enjoys several properties; the only one we will use is that it
is natural with respect to the pullback operation of vector bundles. Proper treatment
is given in [MS74], [Bre93] and [BT82]. The Euler class is the “primary obstruction” to
a non-zero section of 7. For example, we have:

Proposition 4.31. If 7 admits a non-zero section, then e(7) is zero.

Proof. In this case, a generic section is chosen with empty zero locus. Hence its Poincaré
dual is 0. U

We will perform calculations of the Euler class only for rank-2 bundles over compact
oriented surfaces. Every bundle we encounter will admit a section at the boundary of
the surface. Then the Euler class is an element of H?(S,dS;7Z) and consequently may
be expressed as a multiple of the fundamental class of S. This multiple is exactly the
FEuler characteristic of S.

Proposition 4.32. Let T'S denote the tangent bundle of a compact oriented surface S.
Then e(T'S)([S]) = x(S) where [S] € Ha(S,0S;Z) is the fundamental class of S.

Proof. (Sketch.) The zero locus of a generic section of TS is a finite collection of points
(away from the boundary). The Euler class counts these points with sign 1 according to
the orientations of the intersecting sections. On the other hand, a generic section may be
considered as a smooth vector field on S with only isolated singularities. Examination
shows that the indices of this vector field coincide with the signs determined by the
orientation of the intersection. Thus the result follows by the Poincaré-Hopf index
theorem. O

Our next goal is to show that compact leaves of a taut foliation minimize the
Thurston norm amongst representatives in that homology class. First some more general
definitions.

Definition 4.33. A 3-manifold is irreducible if every embedded S? bounds an em-
bedded ball.

Irreducibility implies that each embedded S? is homotopically trivial. A link com-
plement M is irreducible if and only if the link is not split. A link L C S3 is split if
there exists a smoothly embedded S? C S3 disjoint from the link that separates some
components of the link. Alexander’s Theorem [Ale24], a well-known result in 3-manifold
topology, states that any smoothly embedded S? in S? bounds a smoothly embedded
ball. This establishes that a link is split if and only if the link complement is irreducible.

Definition 4.34. A properly embedded compact surface S in a 3-manifold M is com-
pressible if there exists an embedded disk D? C M such that D> N S = dD? and 0D?
does not bound a disk on .S. If no such disk exists, then S is incompressible.

By the Loop Theorem of Papakyriakopoulos (see [Hem76]), a properly embedded
compact surface S in an oriented compact 3-manifold is incompressible if and only if
m1(S) — m (M) is an injection. It is easy to see then, that fibers of a fibered 3-manifold
are incompressible, since by the long exact sequence of homotopy groups from a fibration,
the inclusion of the fundamental group of S is an injection. Similarly, it is true that
compact leaves of a taut foliation are incompressible, but this is not as easy to see
[Nov65], [Thu86].
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Proposition 4.35. Suppose M is an irreducible link complement and S is a Thurston
norm minimizing surface representing a non-trivial homology class. Then either S is
incompressible, or S is homologous to a union of two disks.

Proof. Suppose S is compressible. Then there is a disk D? C M whose boundary lies
on S but does not bound a disk on S. We may perform the same surgery as we did
when removing non-essential intersections in Theorem 4.3. That is, we remove from S
the intersection of S with a tubular neighborhood of D? and glue back in two disks on
either side of the original disk. This operation results in a new surface S’ whose Euler
characteristic has increased by 2.

If this surgery does not increase the number of components of S, then S’ must be a
sphere since it is Thurston norm minimizing. But M is irreducible, so this is impossible
(it implies that S is homologically trivial). Therefore the operation results in disjoint
surfaces S’ = S; U Sy and we have

X(S1) + x(S2) = x(S) +2

The only way this equation does not contradict the norm-minimality of S is if x(S) =0
and either one of S7 or S5 is a sphere, or both are disks. But neither S; or Sy can be a
sphere since this would imply that D? bounded a disk on S. O

Now consider a foliation § of M and a properly embedded surface S. If S is not
a leaf of §, then we consider the intersection of leaves of § with S. For a generic 5,
this intersection produces a foliation of S on the complement of some set of singular
points. These are the points where the tangent space of S corresponds with a tangent
plane of the foliation. Although we will not prove this, these singularities fall into three
categories: center singularities, which locally look like maxima and minima, saddle
singularities, which locally appear as saddles (i.e. in Morse theoretic language they
are index 1 isolated singularities), and circle singularities, which look like a circular
ridge tops. The critical theorem of Thurston and Roussarie states that under certain
circumstances, we may remove all center and circle tangencies by isotopy:

Theorem 4.36. (Thurston, Roussarie). Suppose § is a taut foliation and S is a properly
embedded incompressible surface. Then S can either be isotoped into a leaf, or isotoped
to intersect § in only saddle tangencies. Furthermore every boundary component of S
1s either contained in a leaf or is transverse to §.

Remark. Separate arguments for the proof are given in [CC03] and [Cal07].

Suppose now that .S has been isotoped in M to have only saddle tangencies with §.
We can give a sign to every singularity, depending on whether the normal orientation of
S agrees with the transverse orientation of §. We let I,,(.S) denote the number of positive
saddle intersections (where these orientations agree) and I,,(S) denote the number of
negative saddle intersections.

Proposition 4.37. Let 7 denote the tangent subbundle of the foliation §. Then we have

e(r)([S]) = In — I
X(S) = IP + In
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Proof. (Sketch.) First we calculate e(7)([S]). By the naturality of the Euler class
and its definition, this is the number of points in the intersection of a generic section
of 7 restricted to S with the zero locus, counted with sign. Conveniently, a generic
section of 7 is provided by the intersection of the foliation with S. Explicitly, at non-
singular points, 7 intersects the tangent plane of S in a 1-dimensional subspace, which we
orient according to the orientations of S and 7. Examination of this vector field around
singularities show that the intersection has positive sign when the saddle singularity is
of negative type, and vice versa. This establishes the first equality.

On the other hand, the vector field index at such a singularity is always —1. Hence
the second equality follows by the Poincaré-Hopf theorem. O

Corollary 4.38. Suppose S, §, and T are as above. Then

le(r)([SD] < =x(95)

with equality if and only if S is isotopic to a leaf of § or S is isotopoic to an embedding
that admits only positive type saddle singularities with respect to §. O

This relation is just what we need to show that compact leaves minimize the Thurston
norm.

Theorem 4.39. Suppose M is an irreducible compact oriented 3-manifold equipped with
a taut foliation §. Then compact leaves of § minimize the Thurston norm.

Proof. By Proposition 4.35, since M is irreducible every non-trivial homology class has
an incompressible surface S representing it. Therefore if S is such a surface in the
homology class of a fiber, it satisfies the above inequality (note that a compact leaf
of a taut foliation is always homologically nontrivial, since it has non-zero intersection
number with some closed transversal, by the definition of tautness). But the left side is
exactly the Thurston norm of a leaf (remember that in our situation, the leaves must
have non-positive Euler characteristic by Reeb stability, so the Thurston norm agrees
with the negative Euler characteristic). O

In particular, a fiber of a fibered link complement minimizes the Thurston norm.
Corollary 4.40. If ¢ is a fibered class of a link complement, then xr(p) = ||¢]|a.

Proof. Examine the proof of Theorem 4.14. By the above theorem, a fiber F' minimizes
the Thurston norm. By Proposition 4.19, My has the homotopy type of F' so in particular
F' is connected and by (F') = by (M). Hence for the surface S used in Theorem 4.14 we
may use F'. The inequality between the Alexander and Thurston norms comes from
b1(S) > b1(My), but in this case there is equality. O

Finally, we wish to associate certain top-dimensional faces of the Thurston ball with
fibered classes. Suppose we are given a fibration M — S'. Let 7 denote the subbundle
of T'M corresponding to the fibration. The boundary of M is transverse to the leaves of
the foliation, which means that in a neighborhood of OM there is a nowhere zero section
of 7 (pointing away from M ). This implies that the Euler class of 7 restricted to M is
0. Consequently, we may consider e(7) as a relative cohomology class in H?(M,0M;7Z).
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Proposition 4.41. (Thurston) Let M be a link complement which fibers over S* with
fiber F' a surface of negative Fuler characteristic. Let T denote the tangent subbundle
corresponding to the fibration. Then

in a neighborhood of [F| in Hay(M,0M;R).

Proof. First let us evaluate e(7)([F]). The bundle 7 restricts to the tangent bundle of
F', so by the naturality of the Euler class and the previous proposition, this evaluation
equals the Euler characteristic of F'. Since F' has negative Euler characteristic, we have

le(r)((FD| = x(F) = x-(F) = zr([F])

We must find a neighborhood of [F] in which this equality holds. Let «,...,q; be
closed 1-forms representing a basis of Hi(M;R) and let a be the closed non-singular
1-form obtained as the pullback via the fibration of the volume form on S'. For small
constants ¢;, the closed 1-form w = a+e€1a1+ - - - + €y is still non-singular. Therefore it
defines a foliation. Furthermore, if w belongs to the rational subspace H!(M;Q), then
it corresponds to a fibration, since an integer multiple of w is an integral form and we
apply Theorem 4.29, and any multiple of a form clearly induces the same distribution.

Suppose w belongs to the rational subspace and corresponds to a fibration with fiber
F’, and let 7" denote the tangent plane bundle corresponding to the foliation induced
by w. By the calculation above, |e(7')([F'])| = x7([F’]). But if w is sufficiently close
to «, the bundles 7 and 7/ are isomorphic via small rotations in TM at every point.
Therefore the formula

le(T)((F')] = zo([F])

holds in a dense neighborhood of [F], hence it holds in the whole neighborhood by the
continuity of xp. O

Since both the Thurston norm and evaluation of e(7) are linear, we actually get the
stronger statement that the equality e(7)(a) = —x(«) holds in a cone neighborhood of
the ray containing [F]. Furthermore, this implies that the intersection of this cone with
the unit ball of the Thurston norm satisfies the linear relation e(7)(—) = —1. Therefore
this intersection lies in a top-dimensional face, and every element of the top-dimensional
face satisfies this relation.

Theorem 4.42. (Thurston)[Cal07] The set of rays in Ho(M,OM;R) corresponding to
fibrations of M over S is exactly the set of rational rays intersecting union of some of
the top-dimensional faces of the Thurston norm unit ball.

Proof. Suppose § is a foliation obtained from some foliation that intersects a top-
dimensional face A. As we’ve mentioned, since § is transversely oriented, it is rep-
resented by a non-singular closed 1-form « which is Poincaré dual to a fiber. Next let S
be a norm-minimizing surface lying on a ray that intersects A. By Tischler’s theorem, it
is enough to show that every ray intersecting A is represented by a non-singular closed
1-form (then the rational rays, by our previous remarks, correspond to fibrations). To
that end, let 8 be a closed 1-form Poincaré dual to S whose support is contained in a
small neighborhood of S. Then it suffices to show that for all ¢ > 0, © > 0 such that
t5 + ua is contained in the rational subspace, this element corresponds to a fibration.
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By the previous paragraph, we have e(7)([S]) = —xz7(S) where 7 is the tangent
subbundle corresponding to §. Therefore, by Corollary 4.38, S is either isotopic to
a leaf, or to a properly embedded surface transverse to § except at positive saddle
singularities. In the first case, a = [S] so any combination t[S] + u« already belongs
to the ray of a. In the second case, we may find a vector field X in a neighborhood
of S that is transverse to both § and S and such that a(X) > 0: when § and S are
transverse such a choice is obvious, and since the only singularities are positive saddle
singularities, we can coherently choose X around these points.

Now consider ¢/3 + ua: it is non-singular, since around S we have (¢ + ua)(X) > 0,
and away from S it is just ua. Therefore, if this element belongs to the rational subspace,
it corresponds to a fibration by our previous comments. ]

We have seen that on fibered faces, the Alexander and Thurston norm agree. One
may ask that if a link complement fibers in some way over S!, then do the Alexander
and Thurston norm agree everywhere? Dunfield answered this in the negative, providing
a counterexample in [Dun01]. In fact, the author exhibited a link whose Thurston unit
ball has a fibered face properly contained in a top-dimensional face of the Alexander
unit ball.
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Chapter 5
Epilogue

In conclusion, we offer a glimpse into two modern theories of link invariants that gener-
alize some of the ideas of this thesis.

5.1 Link Floer homology

Link floer homology is a 3-manifold invariant developed by Ozsvath and Szabé and is
closely related to Heegaard-Floer homology of 3-manifolds. The original construction of
the chain complex from which homologies are derived come from a Heegaard diagram
of a 3-manifold with varoius extra information attached to it; this is the holomorphic
construction. The steps needed to define the chain complexes, particularly justifying
the existence of a suitable boundary map, are quite technical and will not be discussed.
There is a large amount of literature expositing this construction, e.g. [OS08a] and the
references therein.

More recently, a more elementary combinatorial construction of the chain complexes
is given by the data of a grid diagram, see [MOSTO07] and the forthcoming book by
Ozsvath, Stipsicz and Szabé [OSS]. Our discussion in Chapter 3 of the Alexander poly-
nomial derived from a grid diagram is intended to hint towards the sort of computations
one encounters in this theory.

In both the combinatorial link Floer homology and the holomorphic version, one
ends up with a collection of slightly different chain complexes. We focus our attention on
HFL(I_;), the link Floer homology. This is a multi-graded F module where F = 7 /27Z.
The F-vector space of the module is usually relatively simple, but lots of information is
contained in the gradings. The multi-grading consists of two parts: one component of
the grading is an element d € Z called the Maslov grading. The other part is a multi-
index that is an element of the half-integer lattice of the link complement. Precisely, one
defines a subset H(L) C Hi(S® — L; Q) called the Alexander grading set. Denoting
the meridional basis of Hy(S3 — L; Z) by pu1, . . ., u, then H(L) consists of those elements

of the form l
Z i
=1

such that 2h; + 1k(L;, L — L;) is an even integer. Here L; is the ith component of the
link L and lk denotes the linking number of closed curves. With the grading in hand we
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may express the link Floer homology as

HFL(L)= @ HFLJL.h)
deZ, heH(L)

The Poincaré polynomial associated to such a multi-graded F-module is

P(q,t1,...,t;) = Z th’fl .. .t;” rankﬁF\Ld(I_;, h)
deZ, heH(L)

where h = 22:1 h;ip;.  Substituting ¢ = —1 returns the Euler characteristic of the
homology, which turns out to be the multivariable Alexander polynomial as defined in
Chapter 3. However, the Poincaré polynomial includes much more information than the
Alexander polynomial, and various extra information can be extracted by substituting
other values for q.

This connection between the Alexander polynomial and link homology is roughly
understood by the following description of the chain complex obtained from a grid
diagram. One first considers the set of grid states, which are bijections between the
rows and columns of the grid diagram, as usual excluding the lower row and the right
hand column of vertices. The grid states freely generate the chain groups, and each grid
state is assigned a Maslov grading and an Alexander grading.

It is clear that grid states identify a summand in the Leibniz formula for the determi-
nant of the grid matrix, since such a summand is precisely a bijection between the rows
and columns of the matrix. As we’ve seen in Chapter 3, the Alexander polynomial is
obtained from this determinant. Now the Maslov grading essentially encodes the sign of
the permutation in each summand (whether this term is added to the determinant with
a plus or minus according to the Leibniz formula). The Alexander grading encodes the
sum of the winding numbers of those vertices including in a particular grid state. Now
the Euler characteristic of the homology may be computed from the chain complex by
summing over these grid states, with the sign and appropriate powers of t1, ..., t; deter-
mined by the Maslov and Alexander gradings. Careful inspection of the gradings reveals
that the resulting polynomial is exactly the Alexander polynomial defined in Chapter
3. Link floer homology is therefore said to categorify the Alexander polynomial, which
is a general concept meaning that the invariant is captured as the Euler characteristic
of a homology theory. .

This shows that the invariant HF' K (E) is at least as strong as the Alexander poly-
nomial; in fact it is much stronger. For example, we may generalize the Alexander norm
to the link homology norm on H'(S% — L;R) defined by

y(h) = max — |h(s)]
s€H(L)|HFL(L,s)#0

where h(s) is the Kronecker evaluation. Then it was shown that

Theorem 5.1. [0S08b] For a link L with no trivial components and for each h
HY(S3 — L;Z) we have
I
wr(h)+ Y h(u)| = 2u(h)
i=1

Therefore the link homology determines the Thurston norm exactly.

Another amazing application of link floer homology extending the results of the thesis
is the ability of this invariant to detect fibered links. Precisely, we have the following
theorem due to Ni:
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Theorem 5.2. [Ni07] Suppose L is a fibered link. If A C H*(S® — L;Z) corresponds
to a fibered face of the Thurston norm with corresponding extremal point h € Hy(S® —
L; Q) then h belongs to the Alexander grading set and the F-module ﬁF'\L(E, h) is one-
dimensional.

Conversely, suppose h € Hi(S® — L; Q) is an extremal point corresponding to a face
A of the Thurston norm and ﬁF\L(I_:, h) is one-dimensional. Then L is fibered and A
is a fibered face.

The first part of the theorem corresponds to the fact that the single-variable Alexan-
der polynomials corresponding to fibered classes are monic. The more surprising result
is the converse statement, of which there is no analogue presented in this thesis.

The results summarized here only hint at the efficacy of the link Floer invariants
and were chosen because of their relevance to this paper. On the other hand, while it
is an exceptional theoretical tool, the computation of link Floer homology (particularly
using the holomorphic construction) can become quite unwieldy for practical purposes.
This displays well the trade-off between power and ease of use (or computability) any
topologist must deal with when choosing between, or inventing, modern invariants.

5.2 Twisted Alexander polynomials and Reidemeister tor-
sion

While the link Floer homology is related to the presentation of the Alexander poly-
nomial given in Chapter 3, the twisted Alexander polynomials are generalizations of
the techniques described in Chapter 2. Research in torsion invariants began with the
work of Reidemeister, who used them to classify lens spaces, which are 3-manifolds well
known to be homotopy equivalent but not homeomorphic. Later Milnor realized the
connection between the Alexander polynomial and this so-called Reidemeister torsion.
More recently, research by Turaev and others has developed the torsion invariants into
a collection of invariants called the twisted Alexander polynomials. Like link Floer ho-
mology, twisted Alexander polynomials offer a very powerful collection of invariants,
but with the caveat that one must consider all representations of the fundamental group
of the link complement at once, making it a somewhat difficult tool to use in practice.
Since the definitions of the twisted torsion invariants is relatively simple, we outline
them in full, following [FV11a], [Tur00] and [Mas08].

We briefly sketch the ideas behind the twisted Alexander polynomials. The funda-
mental tool is the torsion of a based acyclic chain complex, which is a finite-dimensional
chain complex over a field F with trivial homology and a pre-determined choice of basis.
Hence we have a complex

8,”7 8'm7 8
C=0-—0C, Y Coyet S 0y —0

with a choice of basis ¢; for each vector space C;. By acyclicity, the sequence is made
up of short exact sequences

O—)BZ‘—>CZ‘—>BZ‘_1—>0

where B; = im 0;. We pick bases b; of each B;. Then from the above sequence, we can
lift the basis b;—1 and append it with b; to get a basis of C;, denoted b;b;—1. Then there
is a change of basis matrix A expressing b;b;_1 in the basis ¢;. The quantity [b;b;— 1/ ci
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is defined to be det(A). We define an equivalence relation on bases of a vector space by
b = c if the determinant of the change of basis matrix is 1.

Definition 5.3. The torsion of the based acyclic complex C is the quantity

m
7(C) = ] bibi—1/ci]
i=0
It is a routine check to show that the torsion does not depend on the choice of b; or
the lift b;_1. It does, however, depend on the original bases ¢;. Note that the torsion is a
sort of secondary invariant to the Euler characteristic, since it is defined only for acyclic
complexes, for which the Euler characteristic vanishes. The following proposition is
proved with elementary linear algebra, which establishes the torsion as a multiplicative
analogue of the Euler characteristic:

Proposition 5.4. 1. (Multiplicativity.) If 0 — C" — C — C" is a short exact sequence
of based acyclic complezes such that the basis of C is equivalent to one given by the basis

of C" and a lift of C", then
7(C) = £7(C")7(C")

2. (Duality.) If C =0 — Cp, — -+ — Cy — 0 is a based acyclic chain complex, then
its dual C* obtained by applying Hom(—,F) is a based acyclic chain complex and

7(C*) = £r(C) DY

3. (Homological computation. [Mas08]) Suppose A is a Noetherian UFD and C is a
finitely generated free chain complex over A which is based and satisfies rank H;(C') =0
for alli=0,...,m. Let Q(A) denote the field of fractions of A. Then we have:

m

7(C @ Q) =[] (ord Hy(C))™Y

=0

(i+1)

Now suppose M is a compact oriented 3-manifold that is either closed or has toroidal
boundary, for example a link complement in S3. Let F be a free abelian group and R a
commutative domain, so R[F] is the group algebra over R with field of fractions Q(R[F]).
Suppose we are given a representation a : w1 (M) — GL(k, R[F)).

Fix a CW-decomposition of M. This induces a CW-decomposition of the universal
cover M — M given by the lifts of cells of M. The CW-chain complex C, (M) is given
a right Z[m1 (M)]-module structure by o - g = g~ (o) for all chains ¢ and g is acting by
deck transformations. On the other hand, the representation « gives rise to a left group
action of 71 (M) on Q(R)[F]*. Therefore we can consider the following chain complex
over Q(R)[F|: )

Furthermore, we can endow this chain complex with a basis by using cells of M coming
from the cell decomposition of M, and picking the canonical basis of Q(R)[F]*.

Definition 5.5. The twisted Reidemeister torsion of M corresponding to « is 0 if
the above complex is not acyclic, and is equal to

(M, o) = 7(Co(M) @z, (ary) QR)[F]Y)

otherwise.
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A theorem of Chapman states that this quantity is determined by M and « up to
multiplication by an element of {det a(g) | g € m1(M)}. However, the Reidemeister tor-
sion is not a homotopy invariant in general, although certain choices of representation
a do result in a homotopy invariant. An important example is the Milnor torsion
derived from the representation p : m (M) — Q(Z[H1(M;Z)]) induced by the Hurewicz
homomorphism. The following proposition, proved using the homological computation
property of the torsion, relates the Milnor torsion with the classical (untwisted) multi-
variable Alexander polynomial:

Proposition 5.6. [Mil62] The Milnor torsion of a (greater than 1 component) link with
complement M = S3 — L is calculated by

(M, p) = A(L)

Milnor actually proved the more general statement that the Milnor torsion is equiv-
alent to the Alexander function of a finite CW-complex:

Definition 5.7. The Alexander function A(X) of a finite CW-complex X is
A(X) = T (ord(Hi(Xoe: Z) ™™
i>0

where X, is the maximal free abelian cover of X and the orders are calculated consid-
ering H;(Xoo;Z) as Z[Hy(X; Z)]-modules.

It is easy to show that for link complements, the higher homologies of X, vanish so
the Alexander function coincides with the Alexander polynomial (recall it is the order of
H1(X~;Z), so the correspondence between the Milnor torsion and Alexander function
clearly gives us the previous proposition. This correspondence for the representation p
invites a generalization of the Alexander modules to other homomorphisms:

Definition 5.8. Let M be a link complement and « : m (M) — GL(k, R[F]) be a
representation where R is a Noetherian UF'D and [F] is a free abelian group. For i > 0
the ith twisted Alexander module of (M, @) is the R[F]-module

H;i(M; R[F]*) := Hy(C.(M) @i, (u1y) RIF)Y)
The ith twisted Alexander polynomial is ord(H;(M; R[F]*)) € R[F], denoted Ay

We see now that the twisted Alexander modules and polynomials are direct gener-
alizations of the classical definitions given in Chapter 2. It is possible to compute the
twisted Alexander polynomials using a variation of the Fox calculus (see [Tur00]). The
analogue of Milnor’s theorem relating the twisted Reidemeister torsion to the Alexander
polynomial for arbitrary representations is

Theorem 5.9. Let M be a link complement and o : (M) — GL(k, R[F]) be a repre-
sentation. If Af, # 0 fori=0,1,2 then

2
T(M,a) = [[ (A%

=0

We are left with a large collection of link invariants corresponding to representations
of the fundamental group. We sample some of the recent results obtained using twisted
Alexander polynomials.
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Theorem 5.10. [FV12] Let M be an irreducible link complement and let ¢ € HY(M;7Z) =
Hom(H{(M;Z,7Z). Then there exists a representation « : w1 (M) — GL(k,C) such that
the degree of the twisted Reidemeister torsion T(M,a®¢) determines the Thurston norm

of ¢.

Here o ® ¢ is the tensor product representation m (M) — GL(k,C[t,t7!]). The
theorem does not seem to give a terminating procedure for determining the Thurston
norm, since it alludes only to the existence of a suitable representation. However, the
authors of [FV12] do describe an algorithm for calculating the Thurston norm exactly.

As in the case of link Floer homology, twisted Alexander polynomials also detect
fibered classes:

Theorem 5.11. [FV11b] Let M be a link complement. Then there is a necessary and
sufficient condition on the set of twisted Alexander polynomials of the form A%@(b where
¢ € HY(M;Z) and o : (M) — G is a representation of w1 (M) in a finite group G, to
determine whether ¢ is a fibered class.

While we did not write down the condition of the theorem, we remark that it involves
the comparison of the degree of AOA‘?Q& with the Thurston norm of ¢. Therefore if the
Thurston norm of ¢ is unknown it may not be easy to check this condition, but by
the preceding result it is theoretically possible to compute the Thurston norm in finite
time and subsequently apply this theorem. Finally, we note that in order to show ¢ is
a fibered class, it suffices to provide a single representation of 71(M) to a finite group
satisfying the condition of the theorem, and conversely, to show ¢ is not a fibered class
it is sufficient to exhibit a single representation that doesn’t satisfy the condition.

It is unknown whether twisted Alexander polynomials give a complete knot invariant,
but it has been shown that these invariants are able to detect the unknot, trivial links,
the Hopf link, the trefoil knot, and the figure-8 knot [FV13].

We remark that both the link Floer homology and the theory of torsion invariants
are connected to Seiberg-Witten theory, and an explicit connection between some of the
information derived from both theories is given in ([OS04], Theorem 1.2).

5.3 A final example

To conclude, we provide an example of knots which are indistinguishable by the known
homological knot invariants (in particular, the link Floer homology) but are distinguish-
able with the methods presented in this thesis. These knots are the Kanenobu knots,
parametrized by two integers p,q and denoted K, ,. They are given in Figure 5.1. A
box labeled with an integer n means that n full twists occur there (where, if we imag-
ine the strands bounding a ribbon, a positive twist corresponds to twisting the ribbon
counterclockwise). In fact, the Kanenobu knots are examples of a general class of knots
called ribbon knots, which roughly speaking, are formed by connecting trivial links with
embedded ribbons and taking the resulting boundary.

Kanenobu [Kan86] shows that K, , and K, » are equivalent knots if and only if
p,q = p',q as unordered pairs. However, it is known that for pairs (p,q) and (p/,q’)
such that p+q = p'+¢' and pg = p'¢’ mod 2, all the known homological knot invariants
coincide for K, and K, o [Lobl4]. This includes the link Floer homology discussed
above, and the Khovanov homology, which categorifies the Jones polynomial. As a result
none of the known polynomial invariants can distinguish these knots.
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Figure 5.1: The Kanenobu knots K, ;.

On the other hand, Kanenobu gives the following presentation for the Alexander

module:
t2—3t+1 (p—q)t
0 2 —3t+1

A short calculation shows that the knots K, ; and K,/ , have isomorphic Alexander
modules if and only if |p—q| = |p’ — ¢/|. Therefore there are infinitely many examples of
knots which are indistinguishable even with the full force of link Floer homology, but are
easily distinguished by examining the second elementary ideal of the Alexander module.

We hope this convinces the reader that despite the power of modern invariants, it is
still useful to have a thorough understanding of the more elementary tools presented in
this thesis.
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